CREAT: Census Research Exploration and Analysis Tool

Matching Compustat Data to the Longitudinal Business Database, 1976-2020

September 2025

Working Paper Number:

CES-25-65

Abstract

This paper details the methodology for creating an updated Compustat-Longitudinal Business Database (LBD) bridge, facilitating linkage between company identifiers in Compustat and firm identifiers in the LBD. In addition to data from Compustat, we incorporate historical data on public companies from various public and private sources, including information on executive names. Our methodology involves a series of stages using fuzzy name and address matching, including EIN, telephone number, and industry code matching. Qualified researchers with approved proposals can access this bridge though the Federal Statistical Research Data Centers. The Compustat-SSL bridge serves as a crucial resource for longitudinal studies on U.S. businesses, corporate governance, and executive compensation.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
information census, enterprise, database, census data, company, disclosure, corporation, executive, employee, corporate, merger, subsidiary, proprietor, consolidated, incorporated, department, record, census bureau, identifier, firm data


Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Matching Compustat Data to the Longitudinal Business Database, 1976-2020' are listed below in order of similarity.