CREAT: Census Research Exploration and Analysis Tool

Identifying U.S. Merchandise Traders: Integrating Customs Transactions with Business Administrative Data

September 2020

Written by: Fariha Kamal, Wei Ouyang

Working Paper Number:

CES-20-28

Abstract

This paper describes the construction of the Longitudinal Firm Trade Transactions Database (LFTTD) enabling the identification of merchandise traders - exporters and importers - in the U.S. Census Bureau's Business Register (BR). The LFTTD links merchandise export and import transactions from customs declaration forms to the BR beginning in 1992 through the present. We employ a combination of deterministic and probabilistic matching algorithms to assign a unique firm identifier in the BR to a merchandise export or import transaction record. On average, we match 89 percent of export and import values to a firm identifier. In 1992, we match 79 (88) percent of export (import) value; in 2017, we match 92 (96) percent of export (import) value. Trade transactions in year t are matched to years between 1976 and t+1 of the BR. On average, 94 percent of the trade value matches to a firm in year t of the BR. The LFTTD provides the most comprehensive identification of and the foundation for the analysis of goods trading firms in the U.S. economy.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
import, export, commodity, shipment, exporting, exporter, classified, importing, wholesale, gdp, firms export, matching, warehouse, identifier, imported, merchandise, trading, importer, custom, trader, firms import, exporting firms


Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Identifying U.S. Merchandise Traders: Integrating Customs Transactions with Business Administrative Data' are listed below in order of similarity.