Methodology on Creating the U.S. Linked Retail Health Clinic (LiRHC) Database
March 2023
Working Paper Number:
CES-23-10
Abstract
Document Tags and Keywords
Keywords
Keywords are automatically generated using KeyBERT, a powerful and innovative
keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant
keywords.
By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the
text, highlighting the most significant topics and trends. This approach not only enhances searchability but
provides connections that go beyond potentially domain-specific author-defined keywords.
:
report,
department,
discrepancy,
record,
matched,
matching,
retail,
coverage,
medicare,
healthcare,
medicaid,
datasets,
assessed
Tags
Tags are automatically generated using a pretrained language model from spaCy, which excels at
several tasks, including entity tagging.
The model is able to label words and phrases by part-of-speech,
including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are
identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service,
Bureau of Labor Statistics,
Social Security Administration,
Service Annual Survey,
Center for Economic Studies,
County Business Patterns,
Longitudinal Business Database,
Employer Identification Numbers,
Economic Census,
North American Industry Classification System,
National Center for Health Statistics,
Disclosure Review Board,
Centers for Disease Control and Prevention,
Data Management System
Similar Working Papers
Similarity between working papers are determined by an unsupervised neural
network model
know as Doc2Vec.
Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the
capture of semantic meaning in a way that relates to the context of words within the document. The model learns to
associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as
document classification, clustering, and similarity detection by preserving the order and structure of words. The
document vectors are compared using cosine similarity/distance to determine the most similar working papers.
Papers identified with 🔥 are in the top 20% of similarity.
The 10 most similar working papers to the working paper 'Methodology on Creating the U.S. Linked Retail Health Clinic (LiRHC) Database' are listed below in order of similarity.
-
Working PaperAddressing Data Gaps: Four New Lines of Inquiry in the 2017 Economic Census
September 2019
Working Paper Number:
CES-19-28
We describe four new lines of inquiry added to the 2017 Economic Census regarding (i) retail health clinics, (ii) management practices in health care services, (iii) self-service in retail and service industries, and (iv) water use in manufacturing and mining industries. These were proposed by economists from the U.S. Census Bureau's Center for Economic Studies in order to fill data gaps in current Census Bureau products concerning the U.S. economy. The new content addresses such issues as the rise in importance of health care and its complexity, the adoption of automation technologies, and the importance of measuring water, a critical input to many manufacturing and mining industries.View Full Paper PDF
-
Working PaperAutomating Response Evaluation For Franchising Questions On The 2017 Economic Census
July 2019
Working Paper Number:
CES-19-20
Between the 2007 and 2012 Economic Censuses (EC), the count of franchise-affiliated establishments declined by 9.8%. One reason for this decline was a reduction in resources that the Census Bureau was able to dedicate to the manual evaluation of survey responses in the franchise section of the EC. Extensive manual evaluation in 2007 resulted in many establishments, whose survey forms indicated they were not franchise-affiliated, being recoded as franchise-affiliated. No such evaluation could be undertaken in 2012. In this paper, we examine the potential of using external data harvested from the web in combination with machine learning methods to automate the process of evaluating responses to the franchise section of the 2017 EC. Our method allows us to quickly and accurately identify and recode establishments have been mistakenly classified as not being franchise-affiliated, increasing the unweighted number of franchise-affiliated establishments in the 2017 EC by 22%-42%.View Full Paper PDF
-
Working PaperGradient Boosting to Address Statistical Problems Arising from Non-Linkage of Census Bureau Datasets
June 2024
Working Paper Number:
CES-24-27
This article introduces the twangRDC package, which contains functions to address non-linkage in US Census Bureau datasets. The Census Bureau's Person Identification Validation System facilitates data linkage by assigning unique person identifiers to federal, third party, decennial census, and survey data. Not all records in these datasets can be linked to the reference file and as such not all records will be assigned an identifier. This article is a tutorial for using the twangRDC to generate nonresponse weights to account for non-linkage of person records across US Census Bureau datasets.View Full Paper PDF
-
Working PaperEstimating Record Linkage False Match Rate for the Person Identification Validation System
July 2014
Working Paper Number:
carra-2014-02
The Census Bureau Person Identification Validation System (PVS) assigns unique person identifiers to federal, commercial, census, and survey data to facilitate linkages across files. PVS uses probabilistic matching to assign a unique Census Bureau identifier for each person. This paper presents a method to measure the false match rate in PVS following the approach of Belin and Rubin (1995). The Belin and Rubin methodology requires truth data to estimate a mixture model. The parameters from the mixture model are used to obtain point estimates of the false match rate for each of the PVS search modules. The truth data requirement is satisfied by the unique access the Census Bureau has to high quality name, date of birth, address and Social Security (SSN) data. Truth data are quickly created for the Belin and Rubin model and do not involve a clerical review process. These truth data are used to create estimates for the Belin and Rubin parameters, making the approach more feasible. Both observed and modeled false match rates are computed for all search modules in federal administrative records data and commercial data.View Full Paper PDF
-
Working PaperThe Longitudinal Business Database
July 2002
Working Paper Number:
CES-02-17
As the largest federal statistical agency and primary collector of data on businesses, households and individuals, the Census Bureau each year conducts numerous surveys intended to provide statistics on a wide range of topics about the population and economy of the United States. The Census Bureau's decennial population and quinquennial economic censuses are unique, providing information on all U.S. households and business establishments, respectively.View Full Paper PDF
-
Working PaperPerson Matching in Historical Files using the Census Bureau's Person Validation System
September 2014
Working Paper Number:
carra-2014-11
The recent release of the 1940 Census manuscripts enables the creation of longitudinal data spanning the whole of the twentieth century. Linked historical and contemporary data would allow unprecedented analyses of the causes and consequences of health, demographic, and economic change. The Census Bureau is uniquely equipped to provide high quality linkages of person records across datasets. This paper summarizes the linkage techniques employed by the Census Bureau and discusses utilization of these techniques to append protected identification keys to the 1940 Census.View Full Paper PDF
-
Working PaperAssessing Coverage and Quality of the 2007 Prototype Census Kidlink Database
September 2015
Working Paper Number:
carra-2015-07
The Census Bureau is conducting research to expand the use of administrative records data in censuses and surveys to decrease respondent burden and reduce costs while improving data quality. Much of this research (e.g., Rastogi and O''Hara (2012), Luque and Bhaskar (2014)) hinges on the ability to integrate multiple data sources by linking individuals across files. One of the Census Bureau's record linkage methodologies for data integration is the Person Identification Validation System or PVS. PVS assigns anonymous and unique IDs (Protected Identification Keys or PIKs) that serve as linkage keys across files. Prior research showed that integrating 'known associates' information into PVS's reference files could potentially enhance PVS's PIK assignment rates. The term 'known associates' refers to people that are likely to be associated with each other because of a known common link (such as family relationships or people sharing a common address), and thus, to be observed together in different files. One of the results from this prior research was the creation of the 2007 Census Kidlink file, a child-level file linking a child's Social Security Number (SSN) record to the SSN of those identified as the child's parents. In this paper, we examine to what extent the 2007 Census Kidlink methodology was able to link parents SSNs to children SSN records, and also evaluate the quality of those links. We find that in approximately 80 percent of cases, at least one parent was linked to the child's record. Younger children and noncitizens have a higher percentage of cases where neither parent could be linked to the child. Using 2007 tax data as a benchmark, our quality evaluation results indicate that in at least 90 percent of the cases, the parent-child link agreed with those found in the tax data. Based on our findings, we propose improvements to the 2007 Kidlink methodology to increase child-parent links, and discuss how the creation of the file could be operationalized moving forward.View Full Paper PDF
-
Working PaperDescribing the Form 5500-Business Register Match
January 2003
Working Paper Number:
tp-2003-05
-
Working PaperThe Person Identification Validation System (PVS): Applying the Center for Administrative Records Research and Applications' (CARRA) Record Linkage Software
July 2014
Working Paper Number:
carra-2014-01
The Census Bureau's Person Identification Validation System (PVS) assigns unique person identifiers to federal, commercial, census, and survey data to facilitate linkages across and within files. PVS uses probabilistic matching to assign a unique Census Bureau identifier for each person. The PVS matches incoming files to reference files created with data from the Social Security Administration (SSA) Numerical Identification file, and SSA data with addresses obtained from federal files. This paper describes the PVS methodology from editing input data to creating the final file.View Full Paper PDF
-
Working PaperMatching Addresses between Household Surveys and Commercial Data
July 2015
Working Paper Number:
carra-2015-04
Matching third-party data sources to household surveys can benefit household surveys in a number of ways, but the utility of these new data sources depends critically on our ability to link units between data sets. To understand this better, this report discusses potential modifications to the existing match process that could potentially improve our matches. While many changes to the matching procedure produce marginal improvements in match rates, substantial increases in match rates can only be achieved by relaxing the definition of a successful match. In the end, the results show that the most important factor determining the success of matching procedures is the quality and composition of the data sets being matched.View Full Paper PDF