-
Job Tasks, Worker Skills, and Productivity
September 2025
Authors:
John Haltiwanger,
Lucia Foster,
Cheryl Grim,
Zoltan Wolf,
Cindy Cunningham,
Sabrina Wulff Pabilonia,
Jay Stewart,
Cody Tuttle,
G. Jacob Blackwood,
Matthew Dey,
Rachel Nesbit
Working Paper Number:
CES-25-63
We present new empirical evidence suggesting that we can better understand productivity dispersion across businesses by accounting for differences in how tasks, skills, and occupations are organized. This aligns with growing attention to the task content of production. We link establishment-level data from the Bureau of Labor Statistics Occupational Employment and Wage Statistics survey with productivity data from the Census Bureau's manufacturing surveys. Our analysis reveals strong relationships between establishment productivity and task, skill, and occupation inputs. These relationships are highly nonlinear and vary by industry. When we account for these patterns, we can explain a substantial share of productivity dispersion across establishments.
View Full
Paper PDF
-
Productivity Dispersion and Structural Change in Retail Trade
December 2023
Working Paper Number:
CES-23-60R
The retail sector has changed from a sector full of small firms to one dominated by large, national firms. We study how this transformation has impacted productivity levels, growth, and dispersion between 1987 and 2017. We describe this transformation using three overlapping phases: expansion (1980s and 1990s), consolidation (2000s), and stagnation (2010s). We document five findings that help us understand these phases. First, productivity growth was high during the consolidation phase but has fallen more recently. Second, entering establishments drove productivity growth during the expansion phase, but continuing establishments have increased in importance more recently. Third, national chains have more productive establishments than single-unit firms on average, but some single-unit establishments are highly productive. Fourth, productivity dispersion is significant and increasing over time. Finally, more productive firms pay higher wages and grow more quickly. Together, these results suggest that the increasing importance of large national retail firms has been an important driver of productivity and wage growth in the retail sector.
View Full
Paper PDF
-
Dispersion in Dispersion: Measuring Establishment-Level Differences in Productivity
April 2018
Working Paper Number:
CES-18-25RR
We describe new experimental productivity statistics, Dispersion Statistics on Productivity (DiSP), jointly developed and published by the Bureau of Labor Statistics (BLS) and the Census Bureau. Productivity measures are critical for understanding economic performance. Official BLS productivity statistics, which are available for major sectors and detailed industries, provide information on the sources of aggregate productivity growth. A large body of research shows that within-industry variation in productivity provides important insights into productivity dynamics. This research reveals large and persistent productivity differences across businesses even within narrowly defined industries. These differences vary across industries and over time and are related to productivity-enhancing reallocation. Dispersion in productivity across businesses can provide information about the nature of competition and frictions within sectors, and about the sources of rising wage inequality across businesses. Because there were no official statistics providing this level of detail, BLS and the Census Bureau partnered to create measures of within-industry productivity dispersion. These measures complement official BLS aggregate and industry-level productivity growth statistics and thereby improve our understanding of the rich productivity dynamics in the U.S. economy. The underlying microdata for these measures are available for use by qualified researchers on approved projects in the Federal Statistical Research Data Center (FSRDC) network. These new statistics confirm the presence of large productivity differences and we hope that these new data products will encourage further research into understanding these differences.
View Full
Paper PDF
-
Reallocation, Firm Turnover, and Efficiency: Selection on Productivity or Profitability?
September 2005
Working Paper Number:
CES-05-11
There is considerable evidence that producer-level churning contributes substantially to aggregate (industry) productivity growth, as more productive businesses displace less productive ones. However, this research has been limited by the fact that producer-level prices are typically unobserved; thus within-industry price differences are embodied in productivity measures. If prices reflect idiosyncratic demand or market power shifts, high 'productivity' businesses may not be particularly efficient, and the literature's findings might be better interpreted as evidence of entering businesses displacing less profitable, but not necessarily less productive, exiting businesses. In this paper, we investigate the nature of selection and productivity growth using data from industries where we observe producer-level quantities and prices separately. We show there are important differences between revenue and physical productivity. A key dissimilarity is that physical productivity is inversely correlated with plant-level prices while revenue productivity is positively correlated with prices. This implies that previous work linking (revenue-based) productivity to survival has confounded the separate and opposing effects of technical efficiency and demand on survival, understating the true impacts of both. We further show that young producers charge lower prices than incumbents, and as such the literature understates the productivity advantage of new producers and the contribution of entry to aggregate productivity growth.
View Full
Paper PDF
-
Computer Investment, Computer Networks and Productivity
January 2005
Working Paper Number:
CES-05-01
Researchers in a large empirical literature find significant relationships between computers and labor productivity, but the estimated size of that relationship varies considerably. In this paper, we estimate the relationships among computers, computer networks, and plant-level productivity in U.S. manufacturing. Using new data on computer investment, we develop a sample with the best proxies for computer and total capital that the data allow us to construct. We find that computer networks and computer inputs have separate, positive, and significant relationships with U.S. manufacturing plant-level productivity. Keywords: computer input; information technology; labor productivity
View Full
Paper PDF
-
Output Market Segmentation and Productivity
June 2001
Working Paper Number:
CES-01-07
Recent empirical investigations have shown enormous plant-level productivity heterogeneity, even within narrowly defined industries. Most of the theoretical explanations for this have focused on factors that influence the production process, such as idiosyncratic technology shocks or input price differences. I claim that characteristics of the output demand markets can also have predictable influences on the plant-level productivity distribution within an industry. Specifically, an industry's degree of output market segmentation (i.e., the substitutability of one plant's output for another's in that industry) should impact the dispersion and central tendency of the industry's plant-level productivity distribution. I test this notion empirically by seeing if measurable cross-sectional variation in market segmentation affects moments of industry's plant-level productivity distribution moments. I find significant and robust evidence consistent with this notion.
View Full
Paper PDF
-
Market Structure and Productivity: A Concrete Example
June 2001
Working Paper Number:
CES-01-06
This paper shows that imperfect output substitutability explains part of the observed persistent plant-level productivity dispersion. Specifically, as substitutability in a market increases, the market's productivity distribution exhibits falling dispersion and higher central tendency. The proposed mechanism behind this result is truncation of the distribution from below as increased substitutability shifts demand to lower-cost plants and drives inefficient plants out of business. In a case study of the ready-mixed concrete industry, I examine the impact of one manifestation of this effect, driven by geographic market segmentation resulting from transport costs. A theoretical foundation is presented characterizing how differences in the density of local demand impact the number of producers and the ability of customers to choose between suppliers, and through this, the equilibrium productivity and output levels across regions. I also introduce a new method of obtaining plant-level productivity estimates that is well suited to this application and avoids potential shortfalls of commonly used procedures. I use these estimates to empirically test the presented theory, and the results support the predictions of the model. Local demand density has a significant influence on the shape of plant-level productivity distributions, and accounts for part of the observed intra-industry variation in productivity, both between and within given market areas.
View Full
Paper PDF
-
ARE FIXED EFFECTS FIXED? Persistence in Plant Level Productivity
May 1996
Working Paper Number:
CES-96-03
Estimates of production functions suffer from an omitted variable problem; plant quality is an omitted variable that is likely to be correlated with variable inputs. One approach is to capture differences in plant qualities through plant specific intercepts, i.e., to estimate a fixed effects model. For this technique to work, it is necessary that differences in plant quality are more or less fixed; if the "fixed effects" erode over time, such a procedure becomes problematic, especially when working with long panels. In this paper, a standard fixed effects model, extended to allow for serial correlation in the error term, is applied to a 16-year panel of textile plants. This parametric approach strongly accepts the hypothesis of fixed effects. They account for about one-third of the variation in productivity. A simple non-parametric approach, however, concludes that differences in plant qualities erode over time, that is plant qualities f-mix. Monte Carlo results demonstrate that this discrepancy comes from the parametric approach imposing an overly restrictive functional form on the data; if there were fixed effects of the magnitude measured, one would reject the hypothesis of f-mixing. For textiles, at least, the functional form of a fixed effects model appears to generate misleading conclusions. A more flexible functional form is estimated. The "fixed" effects actually have a half life of approximately 10 to 20 years, and they account for about one-half the variation in productivity.
View Full
Paper PDF
-
Pollution Abatement Costs, Regulation And Plant-Level Productivity
December 1994
Working Paper Number:
CES-94-14
We analyze the connection between productivity, pollution abatement expenditures, and other measures of environmental regulation for plants in three industries (paper, oil, and steel). We examine data from 1979 to 1990, considering both total factor productivity levels and growth rates. Plants with higher abatement cost levels have significantly lower productivity levels. The magnitude of the impact is somewhat larger than expected: $1 greater abatement costs appears to be associated with the equivalent of $1.74 in lower productivity for paper mills, $1.35 for oil refineries, and $3.28 for steel mills. However, these results apply only to variation across plants in productivity levels. Estimates looking at productivity variation within plants over time, or estimates using productivity growth rates show a smaller (and insignificant) relationship between abatement costs and productivity. Other measures of environmental regulation faced by the plants (compliance status, enforcement activity, and emissions) are not significantly related to productivity.
View Full
Paper PDF