The Foundations for Evidence-Based Policymaking Act of 2018 (Evidence Act) directed federal agencies to systematically use data when making policy decisions. In response, the U.S. Census Bureau established the Evidence Group within its Center for Economic Studies (CES). With an interdisciplinary team of economists, sociologists, and statisticians, the Evidence Group can support the broader federal government in their efforts to use existing data to improve program operations without increasing respondent burden. For federal agencies administering social safety net and business assistance programs in particular, the team provides a no-cost evidence-building service that links program records to Census Bureau data assets and creates a series of standardized tables describing participants, their economic outcomes prior to program entry, and the communities where they live. These tables provide partner agencies with the detailed information they need to better understand their participants and potentially make their programs more accountable and effective in reaching their target populations. In this working paper, we describe the standardized tables themselves as well as the data assets available at the Census Bureau to create these tables, the data files produced by the table production process, and the methodology used to merge and harmonize data on participants and subsequently calculate unbiased and accurate estimates. We conclude with a brief discussion of steps taken to ensure confidentiality and data security. This documentation is intended to facilitate proper use and understanding of the standardized tables by partner agencies as well as researchers who are interested in leveraging these tools to explore characteristics of their samples of interest.
-
Developing a Residence Candidate File for Use With Employer-Employee Matched Data
January 2017
Working Paper Number:
CES-17-40
This paper describes the Longitudinal Employer-Household Dynamics (LEHD) program's ongoing efforts to use administrative records in a predictive model that describes residence locations for workers. This project was motivated by the discontinuation of a residence file produced elsewhere at the U.S. Census Bureau. The goal of the Residence Candidate File (RCF) process is to provide the LEHD Infrastructure Files with residence information that maintains currency with the changing state of administrative sources and represents uncertainty in location as a probability distribution. The discontinued file provided only a single residence per person/year, even when contributing administrative data may have contained multiple residences. This paper describes the motivation for the project, our methodology, the administrative data sources, the model estimation and validation results, and the file specifications. We find that the best prediction of the person-place model provides similar, but superior, accuracy compared with previous methods and performs well for workers in the LEHD jobs frame. We outline possibilities for further improvement in sources and modeling as well as recommendations on how to use the preference weights in downstream processing.
View Full
Paper PDF
-
Confidentiality Protection in the Census Bureau Quarterly Workforce Indicators
February 2006
Working Paper Number:
tp-2006-02
The QuarterlyWorkforce Indicators are new estimates developed by the Census Bureau's Longitudinal
Employer-Household Dynamics Program as a part of its Local Employment Dynamics
partnership with 37 state Labor Market Information offices. These data provide detailed quarterly
statistics on employment, accessions, layoffs, hires, separations, full-quarter employment
(and related flows), job creations, job destructions, and earnings (for flow and stock categories of
workers). The data are released for NAICS industries (and 4-digit SICs) at the county, workforce
investment board, and metropolitan area levels of geography. The confidential microdata - unemployment
insurance wage records, ES-202 establishment employment, and Title 13 demographic
and economic information - are protected using a permanent multiplicative noise distortion factor.
This factor distorts all input sums, counts, differences and ratios. The released statistics are analytically
valid - measures are unbiased and time series properties are preserved. The confidentiality
protection is manifested in the release of some statistics that are flagged as "significantly distorted
to preserve confidentiality." These statistics differ from the undistorted statistics by a significant
proportion. Even for the significantly distorted statistics, the data remain analytically valid for
time series properties. The released data can be aggregated; however, published aggregates are
less distorted than custom postrelease aggregates. In addition to the multiplicative noise distortion,
confidentiality protection is provided by the estimation process for the QWIs, which multiply imputes
all missing data (including missing establishment, given UI account, in the UI wage record
data) and dynamically re-weights the establishment data to provide state-level comparability with
the BLS's Quarterly Census of Employment and Wages.
View Full
Paper PDF
-
LODES Design and Methodology Report: Methodology Version 7
August 2025
Working Paper Number:
CES-25-52
The purpose of this report is to document the important features of Version 7 of the LEHD Origin-Destination Employment Statistics (LODES) processing system. This includes data sources, data processing methodology, confidentiality protection methodology, some quality measures, and a high-level description of the published data. The intended audience for this document includes LODES data users, Local Employment Dynamics (LED) Partnership members, U.S. Census Bureau management, program quality auditors, and current and future research and development staff members.
View Full
Paper PDF
-
The LEHD Infrastructure Files and the Creation of the Quarterly Workforce Indicators
January 2006
Working Paper Number:
tp-2006-01
The Longitudinal Employer-Household Dynamics (LEHD) Program at the U.S. Census Bureau,
with the support of several national research agencies, has built a set of infrastructure files
using administrative data provided by state agencies, enhanced with information from other administrative
data sources, demographic and economic (business) surveys and censuses. The LEHD
Infrastructure Files provide a detailed and comprehensive picture of workers, employers, and their
interaction in the U.S. economy. Beginning in 2003 and building on this infrastructure, the Census
Bureau has published the Quarterly Workforce Indicators (QWI), a new collection of data series
that offers unprecedented detail on the local dynamics of labor markets. Despite the fine detail,
confidentiality is maintained due to the application of state-of-the-art confidentiality protection
methods. This article describes how the input files are compiled and combined to create the infrastructure
files. We describe the multiple imputation methods used to impute in missing data and
the statistical matching techniques used to combine and edit data when a direct identifier match
requires improvement. Both of these innovations are crucial to the success of the final product. Finally,
we pay special attention to the details of the confidentiality protection system used to protect
the identity and micro data values of the underlying entities used to form the published estimates.
We provide a brief description of public-use and restricted-access data files with pointers to further
documentation for researchers interested in using these data.
View Full
Paper PDF
-
The Creation of the Employment Dynamics Estimates
July 2002
Working Paper Number:
tp-2002-13
View Full
Paper PDF
-
Design Comparison of LODES and ACS Commuting Data Products
October 2014
Working Paper Number:
CES-14-38
The Census Bureau produces two complementary data products, the American Community Survey (ACS) commuting and workplace data and the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES), which can be used to answer questions about spatial, economic, and demographic questions relating to workplaces and home-to-work flows. The products are complementary in the sense that they measure similar activities but each has important unique characteristics that provide information that the other measure cannot. As a result of questions from data users, the Census Bureau has created this document to highlight the major design differences between these two data products. This report guides users on the relative advantages of each data product for various analyses and helps explain differences that may arise when using the products.2,3
As an overview, these two data products are sourced from different inputs, cover different populations and time periods, are subject to different sets of edits and imputations, are released under different confidentiality protection mechanisms, and are tabulated at different geographic and characteristic levels. As a general rule, the two data products should not be expected to match exactly for arbitrary queries and may differ substantially for some queries.
Within this document, we compare the two data products by the design elements that were deemed most likely to contribute to differences in tabulated data. These elements are: Collection, Coverage, Geographic and Longitudinal Scope, Job Definition and Reference Period, Job and Worker Characteristics, Location Definitions (Workplace and Residence), Completeness of Geographic Information and Edits/Imputations, Geographic Tabulation Levels, Control Totals, Confidentiality Protection and Suppression, and Related
Public-Use Data Products.
An in-depth data analysis'in aggregate or with the microdata'between the two data products will be the subject of a future technical report. The Census Bureau has begun a pilot project to integrate ACS microdata with LEHD administrative data to develop an enhanced frame of employment status, place of work, and commuting. The Census Bureau will publish quality metrics for person match rates, residence and workplace match rates, and commute distance comparisons.
View Full
Paper PDF
-
Access Methods for United States Microdata
August 2007
Working Paper Number:
CES-07-25
Beyond the traditional methods of tabulations and public-use microdata samples, statistical agencies have developed four key alternatives for providing non-government researchers with access to confidential microdata to improve statistical modeling. The first, licensing, allows qualified researchers access to confidential microdata at their own facilities, provided certain security requirements are met. The second, statistical data enclaves, offer qualified researchers restricted access to confidential economic and demographic data at specific agency-controlled locations. Third, statistical agencies can offer remote access, through a computer interface, to the confidential data under automated or manual controls. Fourth, synthetic data developed from the original data but retaining the correlations in the original data have the potential for allowing a wide range of analyses.
View Full
Paper PDF
-
Estimating the U.S. Citizen Voting-Age Population (CVAP) Using Blended Survey Data, Administrative Record Data, and Modeling: Technical Report
April 2023
Authors:
J. David Brown,
Danielle H. Sandler,
Lawrence Warren,
Moises Yi,
Misty L. Heggeness,
Joseph L. Schafer,
Matthew Spence,
Marta Murray-Close,
Carl Lieberman,
Genevieve Denoeux,
Lauren Medina
Working Paper Number:
CES-23-21
This report develops a method using administrative records (AR) to fill in responses for nonresponding American Community Survey (ACS) housing units rather than adjusting survey weights to account for selection of a subset of nonresponding housing units for follow-up interviews and for nonresponse bias. The method also inserts AR and modeling in place of edits and imputations for ACS survey citizenship item nonresponses. We produce Citizen Voting-Age Population (CVAP) tabulations using this enhanced CVAP method and compare them to published estimates. The enhanced CVAP method produces a 0.74 percentage point lower citizen share, and it is 3.05 percentage points lower for voting-age Hispanics. The latter result can be partly explained by omissions of voting-age Hispanic noncitizens with unknown legal status from ACS household responses. Weight adjustments may be less effective at addressing nonresponse bias under those conditions.
View Full
Paper PDF
-
Gradient Boosting to Address Statistical Problems Arising from Non-Linkage of Census Bureau Datasets
June 2024
Working Paper Number:
CES-24-27
This article introduces the twangRDC package, which contains functions to address non-linkage in US Census Bureau datasets. The Census Bureau's Person Identification Validation System facilitates data linkage by assigning unique person identifiers to federal, third party, decennial census, and survey data. Not all records in these datasets can be linked to the reference file and as such not all records will be assigned an identifier. This article is a tutorial for using the twangRDC to generate nonresponse weights to account for non-linkage of person records across US Census Bureau datasets.
View Full
Paper PDF
-
Estimating the Graduate Coverage of Post-Secondary Employment Outcomes
September 2025
Working Paper Number:
CES-25-61
This paper proposes a new methodology for estimating the coverage rate of the Post-Secondary Employment Outcomes data product (PSEO), both as a share of new graduates and as a share of total working-age degree holders in the United States. This paper also assesses how representative PSEO is of the broader population of college graduates across an array of institutional and individual characteristics.
View Full
Paper PDF