CREAT: Census Research Exploration and Analysis Tool

Developing a Residence Candidate File for Use With Employer-Employee Matched Data

January 2017

Working Paper Number:

CES-17-40

Abstract

This paper describes the Longitudinal Employer-Household Dynamics (LEHD) program's ongoing efforts to use administrative records in a predictive model that describes residence locations for workers. This project was motivated by the discontinuation of a residence file produced elsewhere at the U.S. Census Bureau. The goal of the Residence Candidate File (RCF) process is to provide the LEHD Infrastructure Files with residence information that maintains currency with the changing state of administrative sources and represents uncertainty in location as a probability distribution. The discontinued file provided only a single residence per person/year, even when contributing administrative data may have contained multiple residences. This paper describes the motivation for the project, our methodology, the administrative data sources, the model estimation and validation results, and the file specifications. We find that the best prediction of the person-place model provides similar, but superior, accuracy compared with previous methods and performs well for workers in the LEHD jobs frame. We outline possibilities for further improvement in sources and modeling as well as recommendations on how to use the preference weights in downstream processing.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimating, data, employee, employed, job, consolidated, imputation, department, workforce, worker, housing, residential, employer household, residence, datasets, reside

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, Center for Economic Studies, Decennial Census, Housing and Urban Development, Postal Service, Department of Housing and Urban Development, American Community Survey, Longitudinal Employer Household Dynamics, Protected Identification Key, Employment History File, Employer Characteristics File, Individual Characteristics File, Department of Health and Human Services, Quarterly Workforce Indicators, NUMIDENT, Composite Person Record, Master Address File, 2010 Census, Probability Density Function, Indian Health Service, PIKed, MAFID, Center for Administrative Records Research and Applications, MAF-ARF, HHS

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Developing a Residence Candidate File for Use With Employer-Employee Matched Data' are listed below in order of similarity.