CREAT: Census Research Exploration and Analysis Tool

Two Perspectives on Commuting: A Comparison of Home to Work Flows Across Job-Linked Survey and Administrative Files

January 2017

Working Paper Number:

CES-17-34

Abstract

Commuting flows and workplace employment data have a wide constituency of users including urban and regional planners, social science and transportation researchers, and businesses. The U.S. Census Bureau releases two, national data products that give the magnitude and characteristics of home to work flows. The American Community Survey (ACS) tabulates households' responses on employment, workplace, and commuting behavior. The Longitudinal Employer-Household Dynamics (LEHD) program tabulates administrative records on jobs in the LEHD Origin-Destination Employment Statistics (LODES). Design differences across the datasets lead to divergence in a comparable statistic: county-to-county aggregate commute flows. To understand differences in the public use data, this study compares ACS and LEHD source files, using identifying information and probabilistic matching to join person and job records. In our assessment, we compare commuting statistics for job frames linked on person, employment status, employer, and workplace and we identify person and job characteristics as well as design features of the data frames that explain aggregate differences. We find a lower rate of within-county commuting and farther commutes in LODES. We attribute these greater distances to differences in workplace reporting and to uncertainty of establishment assignments in LEHD for workers at multi-unit employers. Minor contributing factors include differences in residence location and ACS workplace edits. The results of this analysis and the data infrastructure developed will support further work to understand and enhance commuting statistics in both datasets.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
employ, employed, metropolitan, workplace, workforce, residential, mobility, resident, home, residence, moving, migration, commute

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, Bureau of Labor Statistics, National Science Foundation, Center for Economic Studies, Office of Management and Budget, Current Population Survey, Decennial Census, Cornell University, Unemployment Insurance, North American Industry Classification System, American Community Survey, Longitudinal Employer Household Dynamics, Protected Identification Key, Quarterly Workforce Indicators, Social and Economic Supplement, Quarterly Census of Employment and Wages, Composite Person Record, Local Employment Dynamics, Office of Personnel Management, Master Address File, University of Michigan, 2010 Census

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Two Perspectives on Commuting: A Comparison of Home to Work Flows Across Job-Linked Survey and Administrative Files' are listed below in order of similarity.