The QuarterlyWorkforce Indicators are new estimates developed by the Census Bureau's Longitudinal
Employer-Household Dynamics Program as a part of its Local Employment Dynamics
partnership with 37 state Labor Market Information offices. These data provide detailed quarterly
statistics on employment, accessions, layoffs, hires, separations, full-quarter employment
(and related flows), job creations, job destructions, and earnings (for flow and stock categories of
workers). The data are released for NAICS industries (and 4-digit SICs) at the county, workforce
investment board, and metropolitan area levels of geography. The confidential microdata - unemployment
insurance wage records, ES-202 establishment employment, and Title 13 demographic
and economic information - are protected using a permanent multiplicative noise distortion factor.
This factor distorts all input sums, counts, differences and ratios. The released statistics are analytically
valid - measures are unbiased and time series properties are preserved. The confidentiality
protection is manifested in the release of some statistics that are flagged as "significantly distorted
to preserve confidentiality." These statistics differ from the undistorted statistics by a significant
proportion. Even for the significantly distorted statistics, the data remain analytically valid for
time series properties. The released data can be aggregated; however, published aggregates are
less distorted than custom postrelease aggregates. In addition to the multiplicative noise distortion,
confidentiality protection is provided by the estimation process for the QWIs, which multiply imputes
all missing data (including missing establishment, given UI account, in the UI wage record
data) and dynamically re-weights the establishment data to provide state-level comparability with
the BLS's Quarterly Census of Employment and Wages.
-
Dynamically Consistent Noise Infusion and Partially Synthetic Data as Confidentiality Protection Measures for Related Time Series
July 2012
Working Paper Number:
CES-12-13
The Census Bureau's Quarterly Workforce Indicators (QWI) provide detailed quarterly statistics on employment measures such as worker and job flows, tabulated by worker characteristics in various combinations. The data are released for several levels of NAICS industries and geography, the lowest aggregation of the latter being counties. Disclosure avoidance methods are required to protect the information about individuals and businesses that contribute to the underlying data. The QWI disclosure avoidance mechanism we describe here relies heavily on the use of noise infusion through a permanent multiplicative noise distortion factor, used for magnitudes, counts, differences and ratios. There is minimal suppression and no complementary suppressions. To our knowledge, the release in 2003 of the QWI was the first large-scale use of noise infusion in any official statistical product. We show that the released statistics are analytically valid along several critical dimensions { measures are unbiased and time series properties are preserved. We provide an analysis of the degree to which confidentiality is protected. Furthermore, we show how the judicious use of synthetic data, injected into the tabulation process, can completely eliminate suppressions, maintain analytical validity, and increase the protection of the underlying confidential data.
View Full
Paper PDF
-
The Creation of the Employment Dynamics Estimates
July 2002
Working Paper Number:
tp-2002-13
View Full
Paper PDF
-
The LEHD Infrastructure Files and the Creation of the Quarterly Workforce Indicators
January 2006
Working Paper Number:
tp-2006-01
The Longitudinal Employer-Household Dynamics (LEHD) Program at the U.S. Census Bureau,
with the support of several national research agencies, has built a set of infrastructure files
using administrative data provided by state agencies, enhanced with information from other administrative
data sources, demographic and economic (business) surveys and censuses. The LEHD
Infrastructure Files provide a detailed and comprehensive picture of workers, employers, and their
interaction in the U.S. economy. Beginning in 2003 and building on this infrastructure, the Census
Bureau has published the Quarterly Workforce Indicators (QWI), a new collection of data series
that offers unprecedented detail on the local dynamics of labor markets. Despite the fine detail,
confidentiality is maintained due to the application of state-of-the-art confidentiality protection
methods. This article describes how the input files are compiled and combined to create the infrastructure
files. We describe the multiple imputation methods used to impute in missing data and
the statistical matching techniques used to combine and edit data when a direct identifier match
requires improvement. Both of these innovations are crucial to the success of the final product. Finally,
we pay special attention to the details of the confidentiality protection system used to protect
the identity and micro data values of the underlying entities used to form the published estimates.
We provide a brief description of public-use and restricted-access data files with pointers to further
documentation for researchers interested in using these data.
View Full
Paper PDF
-
National Estimates of Gross Employment and Job Flows from the Quarterly Workforce Indicators with Demographic and Industry Detail
June 2010
Working Paper Number:
CES-10-11
The Quarterly Workforce Indicators (QWI) are local labor market data produced and released every quarter by the United States Census Bureau. Unlike any other local labor market series produced in the U.S. or the rest of the world, the QWI measure employment flows for workers (accession and separations), jobs (creations and destructions) and earnings for demographic subgroups (age and gender), economic industry (NAICS industry groups), detailed geography (block (experimental), county, Core- Based Statistical Area, and Workforce Investment Area), and ownership (private, all) with fully interacted publication tables. The current QWI data cover 47 states, about 98% of the private workforce in those states, and about 92% of all private employment in the entire economy. State participation is sufficiently extensive to permit us to present the first national estimates constructed from these data. We focus on worker, job, and excess (churning) reallocation rates, rather than on levels of the basic variables. This permits comparison to existing series from the Job Openings and Labor Turnover Survey and the Business Employment Dynamics Series from the Bureau of Labor Statistics. The national estimates from the QWI are an important enhancement to existing series because they include demographic and industry detail for both worker and job flow data compiled from underlying micro-data that have been integrated at the job and establishment levels by the Longitudinal Employer-Household Dynamics Program at the Census Bureau. The estimates presented herein were compiled exclusively from public-use data series and are available for download.
View Full
Paper PDF
-
The Sensitivity of Economic Statistics to Coding Errors in Personal Identifiers
October 2002
Working Paper Number:
tp-2002-17
In this paper, we describe the sensitivity of small-cell flow statistics
to coding errors in the identity of the underlying entities. Specifically,
we present results based on a comparison of the U.S. Census Bureau's
Quarterly Workforce Indicators (QWI) before and after correcting for
such errors in SSN-based identifiers in the underlying individual wage
records. The correction used involves a novel application of existing
statistical matching techniques. It is found that even a very conservative
correction procedure has a sizable impact on the statistics. The
average bias ranges from 0.25 percent up to 15 percent for flow statistics,
and up to 5 percent for payroll aggregates.
View Full
Paper PDF
-
Total Error and Variability Measures with Integrated Disclosure Limitation for Quarterly Workforce Indicators and LEHD Origin Destination Employment Statistics in On The Map
January 2017
Working Paper Number:
CES-17-71
We report results from the rst comprehensive total quality evaluation of five major indicators in the U.S. Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) Program Quarterly Workforce Indicators (QWI): total employment, beginning-of-quarter employment, full-quarter employment, total payroll, and average monthly earnings of full-quarter employees. Beginning-of-quarter employment is also the main tabulation variable in the LEHD Origin-Destination Employment Statistics (LODES) workplace reports as displayed in OnTheMap (OTM). The evaluation is conducted by generating multiple threads of the edit and imputation models used in the LEHD Infrastructure File System. These threads conform to the Rubin (1987) multiple imputation model, with each thread or implicate being the output of formal probability models that address coverage, edit, and imputation errors. Design-based sampling variability and nite population corrections are also included in the evaluation. We derive special formulas for the Rubin total variability and its components that are consistent with the disclosure avoidance system used for QWI and LODES/OTM workplace reports. These formulas allow us to publish the complete set of detailed total quality measures for QWI and LODES. The analysis reveals that the five publication variables under study are estimated very accurately for tabulations involving at least 10 jobs. Tabulations involving three to nine jobs have quality in the range generally deemed acceptable. Tabulations involving zero, one or two jobs, which are generally suppressed in the QWI and synthesized in LODES, have substantial total variability but their publication in LODES allows the formation of larger custom aggregations, which will in general have the accuracy estimated for tabulations in the QWI based on a similar number of workers.
View Full
Paper PDF
-
LEHD Infrastructure S2014 files in the FSRDC
September 2018
Working Paper Number:
CES-18-27R
The Longitudinal Employer-Household Dynamics (LEHD) Program at the U.S. Census Bureau, with the support of several national research agencies, maintains a set of infrastructure files using administrative data provided by state agencies, enhanced with information from other administrative data sources, demographic and economic (business) surveys and censuses. The LEHD Infrastructure Files provide a detailed and comprehensive picture of workers, employers, and their interaction in the U.S. economy. This document describes the structure and content of the 2014 Snapshot of the LEHD Infrastructure files as they are made available in the Census Bureau's secure and restricted-access Research Data Center network. The document attempts to provide a comprehensive description of all researcher-accessible files, of their creation, and of any modifications made to the files to facilitate researcher access.
View Full
Paper PDF
-
Total Error and Variability Measures for the Quarterly Workforce Indicators and LEHD Origin Destination Employment Statistics in OnTheMap
September 2020
Working Paper Number:
CES-20-30
We report results from the first comprehensive total quality evaluation of five major indicators in the U.S. Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) Program Quarterly Workforce Indicators (QWI): total flow-employment, beginning-of-quarter employment, full quarter employment, average monthly earnings of full-quarter employees, and total quarterly payroll. Beginning-of-quarter employment is also the main tabulation variable in the LEHD Origin-Destination Employment Statistics (LODES) workplace reports as displayed in On-TheMap (OTM), including OnTheMap for Emergency Management. We account for errors due to coverage; record-level non response; edit and imputation of item missing data; and statistical disclosure limitation. The analysis reveals that the five publication variables under study are estimated very accurately for tabulations involving at least 10 jobs. Tabulations involving three to nine jobs are a transition zone, where cells may be fit for use with caution. Tabulations involving one or two jobs, which are generally suppressed on fitness-for-use criteria in the QWI and synthesized in LODES, have substantial total variability but can still be used to estimate statistics for untabulated aggregates as long as the job count in the aggregate is more than 10.
View Full
Paper PDF
-
Using Partially Synthetic Microdata to Protect Sensitive Cells in Business Statistics
February 2016
Working Paper Number:
CES-16-10
We describe and analyze a method that blends records from both observed and synthetic microdata into public-use tabulations on establishment statistics. The resulting tables use synthetic data only in potentially sensitive cells. We describe different algorithms, and present preliminary results when applied to the Census Bureau's Business Dynamics Statistics and Synthetic Longitudinal Business Database, highlighting accuracy and protection afforded by the method when compared to existing public-use tabulations (with suppressions).
View Full
Paper PDF
-
Disclosure Limitation and Confidentiality Protection in Linked Data
January 2018
Working Paper Number:
CES-18-07
Confidentiality protection for linked administrative data is a combination of access modalities and statistical disclosure limitation. We review traditional statistical disclosure limitation methods and newer methods based on synthetic data, input noise infusion and formal privacy. We discuss how these methods are integrated with access modalities by providing three detailed examples. The first example is the linkages in the Health and Retirement Study to Social Security Administration data. The second example is the linkage of the Survey of Income and Program Participation to administrative data from the Internal Revenue Service and the Social Security Administration. The third example is the Longitudinal Employer-Household Dynamics data, which links state unemployment insurance records for workers and firms to a wide variety of censuses and surveys at the U.S. Census Bureau. For examples, we discuss access modalities, disclosure limitation methods, the effectiveness of those methods, and the resulting analytical validity. The final sections discuss recent advances in access modalities for linked administrative data.
View Full
Paper PDF