CREAT: Census Research Exploration and Analysis Tool

Business Owners and the Self-Employed: 33 Million (and Counting!)

September 2025

Working Paper Number:

CES-25-60

Abstract

Entrepreneurs are known to be key drivers of economic growth, and the rise of online platforms and the broader 'gig economy' has led self-employment to surge in recent decades. Yet the young and small businesses associated with this activity are often absent from economic data. In this paper, we explore a novel longitudinal dataset that covers the owners of tens of millions of the smallest businesses: those without employees. We produce three new sets of statistics on the rapidly growing set of nonemployer businesses. First, we measure transitions between self-employment and wage and salary jobs. Second, we describe nonemployer business entry and exit, as well as transitions between legal form (e.g., sole proprietorship to S corporation). Finally, we link owners to their nonemployer businesses and examine the dynamics of business ownership.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
economist, enterprise, employed, entrepreneurial, proprietorship, entrepreneur, entrepreneurship, proprietor, small businesses, incorporated, earner, nonemployer businesses, businesses grow


Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Business Owners and the Self-Employed: 33 Million (and Counting!)' are listed below in order of similarity.