CREAT: Census Research Exploration and Analysis Tool

Don't Quit Your Day Job: Using Wage and Salary Earnings to Support a New Business

September 2013

Working Paper Number:

CES-13-45

Abstract

This paper makes use of a newly constructed Census Bureau dataset that follows the universe of sole proprietors, employers and non-employers, over 10 years and links their transitions to their activity as employees earning wage and salary income. By combining administrative data on sole proprietors and their businesses with quarterly administrative data on wage and salary jobs held by the same individuals both preceding and concurrent with business startup, we create the unique opportunity to quantify significant workforce dynamics that have up to now remained unobserved. The data allow us to take a first glimpse at these business owners as they initiate business ventures and make the transition from wage and salary work to business ownership and back. We find that the barrier between wage and salary work and self-employment is extremely fluid, with large flows occurring in both directions. We also observe that a large fraction of business owners takeon both roles simultaneously and find that this labor market diversification does have implications for the success of the businesses these owners create. The results for employer transitions to exit and non-employer suggest that there is a 'don't quit your day job' effect that is present for new businesses. Employers are more likely to stay employers if they have a wage and salary job in the year just prior to the transitions that we are tracking. It is especially important to have a stable wage and salary job but there is also evidence that higher earnings from the wage and salary job makes transition less likely. For nonemployers we find roughly similar patterns but there are some key differences. We find that having recent wage and salary income (and having higher earnings from such wage and salary activity) increases the likelihood of survival. Having recent stable wage and salary income decreases the likelihood of a complete exit but increases the likelihood of transiting to be an employer. Having recent wage and salary income in the same industry as the non-employer business has a large and positive impact on the likelihood of transiting to being a non-employer business.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
payroll, enterprise, earnings, employee, employed, venture, proprietorship, entrepreneur, entrepreneurship, labor, proprietor, endogenous, workforce, employing, employment flows, employment wages, longitudinal employer, earner, employment earnings, nonemployer businesses

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, Center for Economic Studies, University of Maryland, Current Population Survey, Employer Identification Numbers, Social Security, North American Industry Classification System, Longitudinal Employer Household Dynamics, Census Bureau Business Register, Business Register, Protected Identification Key

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Don't Quit Your Day Job: Using Wage and Salary Earnings to Support a New Business' are listed below in order of similarity.