CREAT: Census Research Exploration and Analysis Tool

Internal Migration in the U.S. During the COVID-19 Pandemic

September 2024

Working Paper Number:

CES-24-50

Abstract

Survey and administrative internal migration data disagree on whether the COVID-19 pandemic increased or decreased mobility in the U.S. Moreover, though scholars have theorized and documented migration in response to environmental hazards and economic shocks, the novel conditions posed by a global pandemic make it difficult to hypothesize whether and how American migration might change as a result. We link individual-level data from the United States Postal Service's National Change of Address (NCOA) registry to American Community Survey (ACS) and Current Population Survey (CPS-ASEC) responses and other administrative records to document changes in the level, geography, and composition of migrant flows between 2019 and 2021. We find a 2% increase in address changes between 2019 and 2020, representing an additional 603,000 moves, driven primarily by young adults, earners at the extremes of the income distribution, and individuals (as opposed to families) moving over longer distances. Though the number of address changes returned to pre-pandemic levels in 2021, the pandemic-era geographic and compositional shifts in favor of longer distance moves away from the Pacific and Mid-Atlantic regions toward the South and in favor of younger, individual movers persisted. We also show that at least part of the disconnect between survey, media, and administrative/third-party migration data sources stems from the apparent misreporting of address changes on Census Bureau surveys. Among ACS and CPS-ASEC householders linked to NCOA data and filing a permanent change of address in their 1-year survey response reference period, only around 68% of ACS and 49% of CPS-ASEC householders also reported living in a different residence one year ago in their survey response.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
recession, immigrant, geographically, disadvantaged, population, relocation, mobility, resident, geographic, moving, migrate, migration, migrating, migrant, hurricane, pandemic

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, Social Security Administration, New York Times, Federal Reserve Bank, Current Population Survey, American Community Survey, Social Security Number, Longitudinal Employer Household Dynamics, Protected Identification Key, National Center for Health Statistics, Census Bureau Disclosure Review Board, Integrated Public Use Microdata Series, Disclosure Review Board, PIKed, Person Validation System, Census Numident, Personally Identifiable Information, Current Population Survey Annual Social and Economic Supplement, Adjusted Gross Income, Pew Research Center, COVID-19

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Internal Migration in the U.S. During the COVID-19 Pandemic' are listed below in order of similarity.