This is the U.S. Census Bureau's first release of the National Experimental Wellbeing Statistics (NEWS) project. The NEWS project aims to produce the best possible estimates of income and poverty given all available survey and administrative data. We link survey, decennial census, administrative, and third-party data to address measurement error in income and poverty statistics. We estimate improved (pre-tax money) income and poverty statistics for 2018 by addressing several possible sources of bias documented in prior research. We address biases from 1) unit nonresponse through improved weights, 2) missing income information in both survey and administrative data through improved imputation, and 3) misreporting by combining or replacing survey responses with administrative information. Reducing survey error substantially affects key measures of well-being: We estimate median household income is 6.3 percent higher than in survey estimates, and poverty is 1.1 percentage points lower. These changes are driven by subpopulations for which survey error is particularly relevant. For house holders aged 65 and over, median household income is 27.3 percent higher and poverty is 3.3 percentage points lower than in survey estimates. We do not find a significant impact on median household income for householders under 65 or on child poverty. Finally, we discuss plans for future releases: addressing other potential sources of bias, releasing additional years of statistics, extending the income concepts measured, and including smaller geographies such as state and county.
-
Earnings Through the Stages: Using Tax Data to Test for Sources of Error in CPS ASEC Earnings and Inequality Measures
September 2024
Working Paper Number:
CES-24-52
In this paper, I explore the impact of generalized coverage error, item non-response bias, and measurement error on measures of earnings and earnings inequality in the CPS ASEC. I match addresses selected for the CPS ASEC to administrative data from 1040 tax returns. I then compare earnings statistics in the tax data for wage and salary earnings in samples corresponding to seven stages of the CPS ASEC survey production process. I also compare the statistics using the actual survey responses. The statistics I examine include mean earnings, the Gini coefficient, percentile earnings shares, and shares of the survey weight for a range of percentiles. I examine how the accuracy of the statistics calculated using the survey data is affected by including imputed responses for both those who did not respond to the full CPS ASEC and those who did not respond to the earnings question. I find that generalized coverage error and item nonresponse bias are dominated by measurement error, and that an important aspect of measurement error is households reporting no wage and salary earnings in the CPS ASEC when there are such earnings in the tax data. I find that the CPS ASEC sample misses earnings at the high end of the distribution from the initial selection stage and that the final survey weights exacerbate this.
View Full
Paper PDF
-
Incorporating Administrative Data in Survey Weights for the 2018-2022 Survey of Income and Program Participation
October 2024
Working Paper Number:
CES-24-58
Response rates to the Survey of Income and Program Participation (SIPP) have declined over time, raising the potential for nonresponse bias in survey estimates. A potential solution is to leverage administrative data from government agencies and third-party data providers when constructing survey weights. In this paper, we modify various parts of the SIPP weighting algorithm to incorporate such data. We create these new weights for the 2018 through 2022 SIPP panels and examine how the new weights affect survey estimates. Our results show that before weighting adjustments, SIPP respondents in these panels have higher socioeconomic status than the general population. Existing weighting procedures reduce many of these differences. Comparing SIPP estimates between the production weights and the administrative data-based weights yields changes that are not uniform across the joint income and program participation distribution. Unlike other Census Bureau household surveys, there is no large increase in nonresponse bias in SIPP due to the COVID-19 Pandemic. In summary, the magnitude and sign of nonresponse bias in SIPP is complicated, and the existing weighting procedures may change the sign of nonresponse bias for households with certain incomes and program benefit statuses.
View Full
Paper PDF
-
Incorporating Administrative Data in Survey Weights for the Basic Monthly Current Population Survey
January 2024
Working Paper Number:
CES-24-02
Response rates to the Current Population Survey (CPS) have declined over time, raising the potential for nonresponse bias in key population statistics. A potential solution is to leverage administrative data from government agencies and third-party data providers when constructing survey weights. In this paper, we take two approaches. First, we use administrative data to build a non-parametric nonresponse adjustment step while leaving the calibration to population estimates unchanged. Second, we use administratively linked data in the calibration process, matching income data from the Internal Return Service and state agencies, demographic data from the Social Security Administration and the decennial census, and industry data from the Census Bureau's Business Register to both responding and nonresponding households. We use the matched data in the household nonresponse adjustment of the CPS weighting algorithm, which changes the weights of respondents to account for differential nonresponse rates among subpopulations.
After running the experimental weighting algorithm, we compare estimates of the unemployment rate and labor force participation rate between the experimental weights and the production weights. Before March 2020, estimates of the labor force participation rates using the experimental weights are 0.2 percentage points higher than the original estimates, with minimal effect on unemployment rate. After March 2020, the new labor force participation rates are similar, but the unemployment rate is about 0.2 percentage points higher in some months during the height of COVID-related interviewing restrictions. These results are suggestive that if there is any nonresponse bias present in the CPS, the magnitude is comparable to the typical margin of error of the unemployment rate estimate. Additionally, the results are overall similar across demographic groups and states, as well as using alternative weighting methodology. Finally, we discuss how our estimates compare to those from earlier papers that calculate estimates of bias in key CPS labor force statistics.
This paper is for research purposes only. No changes to production are being implemented at this time.
View Full
Paper PDF
-
Measuring Income of the Aged in Household Surveys: Evidence from Linked Administrative Records
June 2024
Working Paper Number:
CES-24-32
Research has shown that household survey estimates of retirement income (defined benefit pensions and defined contribution account withdrawals) suffer from substantial underreporting which biases downward measures of financial well-being among the aged. Using data from both the redesigned 2016 Current Population Survey Annual Social and Economic Supplement (CPS ASEC) and the Health and Retirement Study (HRS), each matched with administrative records, we examine to what extent underreporting of retirement income affects key statistics such as reliance on Social Security benefits and poverty among the aged. We find that underreporting of retirement income is still prevalent in the CPS ASEC. While the HRS does a better job than the CPS ASEC in terms of capturing retirement income, it still falls considerably short compared to administrative records. Consequently, the relative importance of Social Security income remains overstated in household surveys'53 percent of elderly beneficiaries in the CPS ASEC and 49 percent in the HRS rely on Social Security for the majority of their incomes compared to 42 percent in the linked administrative data. The poverty rate for those aged 65 and over is also overstated'8.8 percent in the CPS ASEC and 7.4 percent in the HRS compared to 6.4 percent in the linked administrative data. Our results illustrate the effects of using alternative data sources in producing key statistics from the Social Security Administration's Income of the Aged publication.
View Full
Paper PDF
-
Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net
October 2015
Working Paper Number:
CES-15-35
We examine the consequences of underreporting of transfer programs in household survey data for several prototypical analyses of low-income populations. We focus on the Current Population Survey (CPS), the source of official poverty and inequality statistics, but provide evidence that our qualitative conclusions are likely to apply to other surveys. We link administrative data for food stamps, TANF, General Assistance, and subsidized housing from New York State to the CPS at the individual level. Program receipt in the CPS is missed for over one-third of housing assistance recipients, 40 percent of food stamp recipients and 60 percent of TANF and General Assistance recipients. Dollars of benefits are also undercounted for reporting recipients, particularly for TANF, General Assistance and housing assistance. We find that the survey data sharply understate the income of poor households, as conjectured in past work by one of the authors. Underreporting in the survey data also greatly understates the effects of anti-poverty programs and changes our understanding of program targeting, often making it seem that welfare programs are less targeted to both the very poorest and middle income households than they are. Using the combined data rather than survey data alone, the poverty reducing effect of all programs together is nearly doubled while the effect of housing assistance is tripled. We also re-examine the coverage of the safety net, specifically the share of people without work or program receipt. Using the administrative measures of program receipt rather than the survey ones often reduces the share of single mothers falling through the safety net by one-half or more.
View Full
Paper PDF
-
The Antipoverty Impact of the EITC: New Estimates from Survey and Administrative Tax Records
April 2019
Working Paper Number:
CES-19-14R
We reassess the antipoverty effects of the EITC using unique data linking the CPS Annual Social and Economic Supplement to IRS data for the same individuals spanning years 2005-2016. We compare EITC benefits from standard simulators to administrative EITC payments and find that significantly more actual EITC payments flow to childless tax units than predicted, and to those whose family income places them above official poverty thresholds. However, actual EITC payments appear to be target efficient at the tax unit level. In 2016, about 3.1 million persons were lifted out of poverty by the EITC, substantially less than prior estimates.
View Full
Paper PDF
-
A COMPARISON OF PERSON-REPORTED INDUSTRY TO EMPLOYER-REPORTED INDUSTRY
IN SURVEY AND ADMINISTRATIVE DATA
September 2013
Working Paper Number:
CES-13-47
The Census Bureau collects industry information through surveys and administrative data and creates associated public-use statistics. In this paper, we compare person-reported industry in the American Community Survey (ACS) to employer-reported industry from the Quarterly Census of Employment and Wages (QCEW) that is part of the Census Bureau's Longitudinal Employer-Household Dynamics (LEHD) program. This research provides necessary information on the use of administrative data as a supplement to survey data industry information, and the findings will be useful for anyone using industry information from either source. Our project is part of a larger effort to compare information on jobs from household survey data to employer-reported information. This research is the first to compare ACS job data to firm-based administrative data. We find an overall industry sector match rate of 75 percent, and a 61 percent match rate at the 4-digit Census Industry Code (CIC) level. Industry match rates vary by sector and by whether industry sector is classified using ACS or LEHD industry information. The educational services and health care and social assistance sectors have among the highest match rates. The management of companies and enterprises sector has the lowest match rate, using either ACS-reported or LEHD-reported sector. For individuals with imputed industry data, the industry sector match rate is only 14 percent. Our findings suggest that the industry distribution and the sample in a particular industry sector will differ depending on whether ACS or LEHD data are used.
View Full
Paper PDF
-
The Icing on the Cake: The Effects of Monetary Incentives on Income Data Quality in the SIPP
January 2024
Working Paper Number:
CES-24-03
Accurate measurement of key income variables plays a crucial role in economic research and policy decision-making. However, the presence of item nonresponse and measurement error in survey data can cause biased estimates. These biases can subsequently lead to sub-optimal policy decisions and inefficient allocation of resources. While there have been various studies documenting item nonresponse and measurement error in economic data, there have not been many studies investigating interventions that could reduce item nonresponse and measurement error. In our research, we investigate the impact of monetary incentives on reducing item nonresponse and measurement error for labor and investment income in the Survey of Income and Program Participation (SIPP). Our study utilizes a randomized incentive experiment in Waves 1 and 2 of the 2014 SIPP, which allows us to assess the effectiveness of incentives in reducing item nonresponse and measurement error. We find that households receiving incentives had item nonresponse rates that are 1.3 percentage points lower for earnings and 1.5 percentage points lower for Social Security income. Measurement error was 6.31 percentage points lower at the intensive margin for interest income, and 16.48 percentage points lower for dividend income compared to non-incentive recipient households. These findings provide valuable insights for data producers and users and highlight the importance of implementing strategies to improve data quality in economic research.
View Full
Paper PDF
-
Exploring Differences in Employment between Household and Establishment Data
April 2009
Working Paper Number:
CES-09-09
Using a large data set that links individual Current Population Survey (CPS) records to employer-reported administrative data, we document substantial discrepancies in basic measures of employment status that persist even after controlling for known definitional differences between the two data sources. We hypothesize that reporting discrepancies should be most prevalent for marginal workers and marginal jobs, and find systematic associations between the incidence of reporting discrepancies and observable person and job characteristics that are consistent with this hypothesis. The paper discusses the implications of the reported findings for both micro and macro labor market analysis
View Full
Paper PDF
-
Introducing the Medical Expenditure Panel Survey-Insurance Component with Administrative Records (MEPS-ICAR): Description, Data Construction Methodology, and Quality Assessment
August 2022
Working Paper Number:
CES-22-29
This report introduces a new dataset, the Medical Expenditure Panel Survey-Insurance Component with Administrative Records (MEPS-ICAR), consisting of MEPS-IC survey data on establishments and their health insurance benefits packages linked to Decennial Census data and administrative tax records on MEPS-IC establishments' workforces. These data include new measures of the characteristics of MEPS-IC establishments' parent firms, employee turnover, the full distribution of MEPS-IC workers' personal and family incomes, the geographic locations where those workers live, and improved workforce demographic detail. Next, this report details the methods used for producing the MEPS-ICAR. Broadly, the linking process begins by matching establishments' parent firms to their workforces using identifiers appearing in tax records. The linking process concludes by matching establishments to their own workforces by identifying the subset of their parent firm's workforce that best matches the expected size, total payroll, and residential geographic distribution of the establishment's workforce. Finally, this report presents statistics characterizing the match rate and the MEPS-ICAR data itself. Key results include that match rates are consistently high (exceeding 90%) across nearly all data subgroups and that the matched data exhibit a reasonable distribution of employment, payroll, and worker commute distances relative to expectations and external benchmarks. Notably, employment measures derived from tax records, but not used in the match itself, correspond with high fidelity to the employment levels that establishments report in the MEPS-IC. Cumulatively, the construction of the MEPS-ICAR significantly expands the capabilities of the MEPS-IC and presents many opportunities for analysts.
View Full
Paper PDF