Shifting earnings inequality among U.S. workers over the last five decades has been widely stud ied, but understanding how these shifts evolve across smaller groups has been difficult. Publicly available data sources typically only ensure representative data at high levels of aggregation, so they obscure many details of earnings distributions for smaller populations. We define and construct a set of granular statistics describing income distributions, income mobility and con ditional income growth for a large number of subnational groups in the U.S. for a two-decade period (1998-2019). In this paper, we use the resulting data to explore the evolution of income inequality and mobility for detailed groups defined by race and ethnicity. We find that patterns identified from the universe of tax filers and W-2 recipients that we observe differ in important ways from those that one might identify in public sources. The full set of statistics that we construct is available publicly as the Income Distributions and Dynamics in America, or IDDA, data set.
-
Mobility, Opportunity, and Volatility Statistics (MOVS):
Infrastructure Files and Public Use Data
April 2024
Working Paper Number:
CES-24-23
Federal statistical agencies and policymakers have identified a need for integrated systems of household and personal income statistics. This interest marks a recognition that aggregated measures of income, such as GDP or average income growth, tell an incomplete story that may conceal large gaps in well-being between different types of individuals and families. Until recently, longitudinal income data that are rich enough to calculate detailed income statistics and include demographic characteristics, such as race and ethnicity, have not been available. The Mobility, Opportunity, and Volatility Statistics project (MOVS) fills this gap in comprehensive income statistics. Using linked demographic and tax records on the population of U.S. working-age adults, the MOVS project defines households and calculates household income, applying an equivalence scale to create a personal income concept, and then traces the progress of individuals' incomes over time. We then output a set of intermediate statistics by race-ethnicity group, sex, year, base-year state of residence, and base-year income decile. We select the intermediate statistics most useful in developing more complex intragenerational income mobility measures, such as transition matrices, income growth curves, and variance-based volatility statistics. We provide these intermediate statistics as part of a publicly released data tool with downloadable flat files and accompanying documentation. This paper describes the data build process and the output files, including a brief analysis highlighting the structure and content of our main statistics.
View Full
Paper PDF
-
Re-examining Regional Income Convergence: A Distributional Approach
February 2023
Working Paper Number:
CES-23-05
We re-examine recent trends in regional income convergence, considering the full distribution of income rather than focusing on the mean. Measuring similarity by comparing each percentile of state
distributions to the corresponding percentile of the national distribution, we find that state incomes have become less similar (i.e. they have diverged) within the top 20 percent of the income distribution since 1969. The top percentile alone accounts for more than half of aggregate divergence across states over this period by our measure, and the top five percentiles combine to account for 93 percent. Divergence in top incomes across states appears to be driven largely by changes in top incomes among White people, while top incomes among Black people have experienced relatively little divergence.
View Full
Paper PDF
-
Estimating Trends in U.S. Income Inequality Using the Current Population Survey: The Importance of Controlling for Censoring
August 2008
Working Paper Number:
CES-08-25
Using internal and public use March Current Population Survey (CPS) data, we analyze trends in US income inequality (1975'2004). We find that the upward trend in income inequality prior to 1993 significantly slowed thereafter once we control for top coding in the public use data and censoring in the internal data. Because both series do not capture trends at the very top of the income distribution, we use a multiple imputation approach in which values for censored observations are imputed using draws from a Generalized Beta distribution of the Second Kind (GB2) fitted to internal data. Doing so, we find income inequality trends similar to those derived from unadjusted internal data. Our trend results are generally robust to the choice of inequality index, whether Gini coefficient or other commonly-used indices. When we compare our best estimates of the income shares held by the richest tenth with those reported by Piketty and Saez (2003), our trends fairly closely match their trends, except for the top 1 percent of the distribution. Thus, we argue that if United States income inequality has been substantially increasing since 1993, such increases are confined to this very high income group.
View Full
Paper PDF
-
Recent Trends in Top Income Shares in the USA: Reconciling Estimates from March CPS and IRS Tax Return Data
September 2009
Working Paper Number:
CES-09-26
Although the vast majority of US research on trends in the inequality of family income is based on public-use March Current Population Survey (CPS) data, a new wave of research based on Internal Revenue Service (IRS) tax return data reports substantially higher levels of inequality and faster growing trends. We show that these apparently inconsistent estimates can largely be reconciled once one uses internal CPS data (which better captures the top of the income distribution than public-use CPS data) and defines the income distribution in the same way. Using internal CPS data for 1967'2006, we closely match the IRS data-based estimates of top income shares reported by Piketty and Saez (2003), with the exception of the share of the top 1 percent of the distribution during 1993'2000. Our results imply that, if inequality has increased substantially since 1993, the increase is confined to income changes for those in the top 1 percent of the distribution.
View Full
Paper PDF
-
Internal Migration in the U.S. During the COVID-19 Pandemic
September 2024
Working Paper Number:
CES-24-50
Survey and administrative internal migration data disagree on whether the COVID-19 pandemic increased or decreased mobility in the U.S. Moreover, though scholars have theorized and documented migration in response to environmental hazards and economic shocks, the novel conditions posed by a global pandemic make it difficult to hypothesize whether and how American migration might change as a result. We link individual-level data from the United States Postal Service's National Change of Address (NCOA) registry to American Community Survey (ACS) and Current Population Survey (CPS-ASEC) responses and other administrative records to document changes in the level, geography, and composition of migrant flows between 2019 and 2021. We find a 2% increase in address changes between 2019 and 2020, representing an additional 603,000 moves, driven primarily by young adults, earners at the extremes of the income distribution, and individuals (as opposed to families) moving over longer distances. Though the number of address changes returned to pre-pandemic levels in 2021, the pandemic-era geographic and compositional shifts in favor of longer distance moves away from the Pacific and Mid-Atlantic regions toward the South and in favor of younger, individual movers persisted. We also show that at least part of the disconnect between survey, media, and administrative/third-party migration data sources stems from the apparent misreporting of address changes on Census Bureau surveys. Among ACS and CPS-ASEC householders linked to NCOA data and filing a permanent change of address in their 1-year survey response reference period, only around 68% of ACS and 49% of CPS-ASEC householders also reported living in a different residence one year ago in their survey response.
View Full
Paper PDF
-
The Census Historical Environmental Impacts Frame
October 2024
Working Paper Number:
CES-24-66
The Census Bureau's Environmental Impacts Frame (EIF) is a microdata infrastructure that combines individual-level information on residence, demographics, and economic characteristics with environmental amenities and hazards from 1999 through the present day. To better understand the long-run consequences and intergenerational effects of exposure to a changing environment, we expand the EIF by extending it backward to 1940. The Historical Environmental Impacts Frame (HEIF) combines the Census Bureau's historical administrative data, publicly available 1940 address information from the 1940 Decennial Census, and historical environmental data. This paper discusses the creation of the HEIF as well as the unique challenges that arise with using the Census Bureau's historical administrative data.
View Full
Paper PDF
-
Trends in Earnings Volatility using Linked Administrative and Survey Data
August 2020
Working Paper Number:
CES-20-24
We document trends in earnings volatility separately by gender in combination with other characteristics such as race, educational attainment, and employment status using unique linked survey and administrative data for the tax years spanning 1995-2015. We also decompose the variance of trend volatility into within- and between-group contributions, as well as transitory and permanent shocks. Our results for continuously working men suggest that trend earnings volatility was stable over our period in both survey and tax data, though with a substantial countercyclical business-cycle component. Trend earnings volatility among women declined over the period in both survey and administrative data, but unlike for men, there was no change over the Great Recession. The variance decompositions indicate that nonresponders, low-educated, racial minorities, and part-year workers have the greatest group specific earnings volatility, but with the exception of part-year workers, they contribute least to the level and trend of volatility owing to their small share of the population. There is evidence of stable transitory volatility, but rising permanent volatility over the past two decades in male and female earnings.
View Full
Paper PDF
-
Measuring Inequality Using Censored Data: A Multiple Imputation Approach
April 2009
Working Paper Number:
CES-09-05
To measure income inequality with right censored (topcoded) data, we propose multiple imputation for censored observations using draws from Generalized Beta of the Second Kind distributions to provide partially synthetic datasets analyzed using complete data methods. Estimation and inference uses Reiter's (Survey Methodology 2003) formulae. Using Current Population Survey (CPS) internal data, we find few statistically significant differences in income inequality for pairs of years between 1995 and 2004. We also show that using CPS public use data with cell mean imputations may lead to incorrect inferences about inequality differences. Multiply-imputed public use data provide an intermediate solution.
View Full
Paper PDF
-
Consistent Cell Means for Topcoded Incomes in the Public Use March CPS (1976-2007)
March 2008
Working Paper Number:
CES-08-06
Using the internal March CPS, we create and in this paper distribute to the larger research community a cell mean series that provides the mean of all income values above the topcode for any income source of any individual in the public use March CPS that has been topcoded since 1976. We also describe our construction of this series. When we use this series together with the public use March CPS, we closely match the yearly mean income levels and income inequalities of the U.S. population found using the internal March CPS data.
View Full
Paper PDF
-
Using the P90/P10 Index to Measure U.S. Inequality Trends with Current Population Survey Data: A View From Inside the Census Bureau Vaults
June 2007
Working Paper Number:
CES-07-17
The March Current Population Survey (CPS) is the primary data source for estimation of levels and trends in labor earnings and income inequality in the USA. Time-inconsistency problems related to top coding in theses data have led many researchers to use the ratio of the 90th and 10th percentiles of these distributions (P90/P10) rather than a more traditional summary measure of inequality. With access to public use and restricted-access internal CPS data, and bounding methods, we show that using P90/P10 does not completely obviate time inconsistency problems, especially for household income inequality trends. Using internal data, we create consistent cell mean values for all top-coded public use values that, when used with public use data, closely track inequality trends in labor earnings and household income using internal data. But estimates of longer-term inequality trends with these corrected data based on P90/P10 differ from those based on the Gini coefficient. The choice of inequality measure matters.
View Full
Paper PDF