CREAT: Census Research Exploration and Analysis Tool

The Dynamics Of Productivity In The Telecommunications Equipment Industry

February 1992

Working Paper Number:

CES-92-02

Abstract

Technological change and deregulation have caused a major restructuring of the telecommunications equipment industry over the last two decades. We estimate the parameters of a production function for the equipment industry and then use those estimates to analyze the evolution of plant-level productivity over this period. The restructuring involved significant entry and exit and large changes in the sizes of incumbents. Since firms choices on whether to liquidate and the on the quantities of inputs demanded should they continue depend on their productivity, we develop an estimation algorithm that takes into account the relationship between productivity on the one hand, and both input demand and survival on the other. The algorithm is guided by a dynamic equilibrium model that generates the exit and input demand equations needed to correct for the simultaneity and selection problems. A fully parametric estimation algorithm based on these decision rules would be both computationally burdensome and require a host of auxiliary assumptions. So we develop a semiparametric technique which is both consistent with a quite general version of the theoretical framework and easy to use. The algorithm produces markedly different estimates of both production function parameters and of productivity movements than traditional estimation procedures. We find an increase in the rate of industry productivity growth after deregulation. This in spite of the fact that there was no increase in the average of the plants' rates of productivity growth, and there was actually a fall in our index of the efficiency of the allocation of variable factors conditional on the existing distribution of fixed factors. Deregulation was, however, followed by a reallocation of capital towards more productive establishments (by a down sizing, often shutdown, of unproductive plants and by a disproportionate growth of productive establishments) which more than offset the other factors' negative impacts on aggregate productivity.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
demand, profitability, estimation, production, endogeneity, estimating, manufacturing, industrial, estimator, productivity growth, growth, estimates production, industry productivity, efficiency, productivity measures, growth productivity, productivity estimates, regression, expenditure, rates productivity, estimates productivity, regulation, analysis productivity, regulation productivity, observed productivity

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Annual Survey of Manufactures, Bureau of Labor Statistics, Longitudinal Research Database, National Science Foundation, Center for Economic Studies, Ordinary Least Squares, Cobb-Douglas

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'The Dynamics Of Productivity In The Telecommunications Equipment Industry' are listed below in order of similarity.