We study the early adoption and diffusion of five AI-related technologies (automated-guided vehicles, machine learning, machine vision, natural language processing, and voice recognition) as documented in the 2018 Annual Business Survey of 850,000 firms across the United States. We find that fewer than 6% of firms used any of the AI-related technologies we measure, though most very large firms reported at least some AI use. Weighted by employment, average adoption was just over 18%. AI use in production, while varying considerably by industry, nevertheless was found in every sector of the economy and clustered with emerging technologies such as cloud computing and robotics. Among dynamic young firms, AI use was highest alongside more educated, more-experienced, and younger owners, including owners motivated by bringing new ideas to market or helping the community. AI adoption was also more common alongside indicators of high-growth entrepreneurship, including venture capital funding, recent product and process innovation, and growth-oriented business strategies. Early adoption was far from evenly distributed: a handful of 'superstar' cities and emerging hubs led startups' adoption of AI. These patterns of early AI use foreshadow economic and social impacts far beyond this limited initial diffusion, with the possibility of a growing 'AI divide' if early patterns persist.
-
Starting Up AI
March 2024
Working Paper Number:
CES-24-09
Using comprehensive administrative data on business applications over the period 2004-2023, we study emerging business ideas for developing AI technologies or producing goods or services that use, integrate, or rely on AI. The annual number of new AI business applications is stable between 2004 and 2012 but begins to rise after 2012, and increases faster from 2016 onward into the pandemic, with a large, discrete jump in 2023. The distribution of AI business applications is highly uneven across states and sectors. AI business applications have a higher likelihood of becoming employer startups and higher expected initial employment compared to other business applications. Moreover, controlling for application characteristics, employer businesses originating from AI business applications exhibit higher employment, revenue, payroll, average pay per employee, and labor share, but have similar labor productivity and lower survival rate, compared to those originating from other business applications. While these early patterns may change as the diffusion of AI progresses, the rapid rise in AI business applications, combined with their generally higher rate of transition to employers and better performance in some post-transition outcomes, suggests a small but growing contribution from these applications to business dynamism.
View Full
Paper PDF
-
Advanced Technologies Adoption and Use by U.S. Firms: Evidence from the Annual Business Survey
December 2020
Working Paper Number:
CES-20-40
We introduce a new survey module intended to complement and expand research on the causes and consequences of advanced technology adoption. The 2018 Annual Business Survey (ABS), conducted by the Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES), provides comprehensive and timely information on the diffusion among U.S. firms of advanced technologies including artificial intelligence (AI), cloud computing, robotics, and the digitization of business information. The 2018 ABS is a large, nationally representative sample of over 850,000 firms covering all private, nonfarm sectors of the economy. We describe the motivation for and development of the technology module in the ABS, as well as provide a first look at technology adoption and use patterns across firms and sectors. We find that digitization is quite widespread, as is some use of cloud computing. In contrast, advanced technology adoption is rare and generally skewed towards larger and older firms. Adoption patterns are consistent with a hierarchy of increasing technological sophistication, in which most firms that adopt AI or other advanced business technologies also use the other, more widely diffused technologies. Finally, while few firms are at the technology frontier, they tend to be large so technology exposure of the average worker is significantly higher. This new data will be available to qualified researchers on approved projects in the Federal Statistical Research Data Center network.
View Full
Paper PDF
-
Automation and the Workforce: A Firm-Level View from the 2019 Annual Business Survey
April 2022
Authors:
John Haltiwanger,
Lucia Foster,
Emin Dinlersoz,
Nikolas Zolas,
Daron Acemoglu,
Catherine Buffington,
Nathan Goldschlag,
Zachary Kroff,
David Beede,
Gary Anderson,
Eric Childress,
Pascual Restrepo
Working Paper Number:
CES-22-12R
This paper describes the adoption of automation technologies by US firms across all economic sectors by leveraging a new module introduced in the 2019 Annual Business Survey, conducted by the US Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES). The module collects data from over 300,000 firms on the use of five advanced technologies: AI, robotics, dedicated equipment, specialized software, and cloud computing. The adoption of these technologies remains low (especially for AI and robotics), varies substantially across industries, and concentrates on large and young firms. However, because larger firms are much more likely to adopt them, 12-64% of US workers and 22-72% of manufacturing workers are exposed to these technologies. Firms report a variety of motivations for adoption, including automating tasks previously performed by labor. Consistent with the use of these technologies for automation, adopters have higher labor productivity and lower labor shares. In particular, the use of these technologies is associated with a 11.4% higher labor productivity, which accounts for 20'30% of the difference in labor productivity between large firms and the median firm in an industry. Adopters report that these technologies raised skill requirements and led to greater demand for skilled labor, but brought limited or ambiguous effects to their employment levels.
View Full
Paper PDF
-
Tracking Firm Use of AI in Real Time: A Snapshot from the Business Trends and Outlook Survey
March 2024
Working Paper Number:
CES-24-16
Timely and accurate measurement of AI use by firms is both challenging and crucial for understanding the impacts of AI on the U.S. economy. We provide new, real-time estimates of current and expected future use of AI for business purposes based on the Business Trends and Outlook Survey for September 2023 to February 2024. During this period, bi-weekly estimates of AI use rate rose from 3.7% to 5.4%, with an expected rate of about 6.6% by early Fall 2024. The fraction of workers at businesses that use AI is higher, especially for large businesses and in the Information sector. AI use is higher in large firms but the relationship between AI use and firm size is non-monotonic. In contrast, AI use is higher in young firms although, on an employment-weighted basis, is U-shaped in firm age. Common uses of AI include marketing automation, virtual agents, and data/text analytics. AI users often utilize AI to substitute for worker tasks and equipment/software, but few report reductions in employment due to AI use. Many firms undergo organizational changes to accommodate AI, particularly by training staff, developing new workflows, and purchasing cloud services/storage. AI users also exhibit better overall performance and higher incidence of employment expansion compared to other businesses. The most common reason for non-adoption is the inapplicability of AI to the business.
View Full
Paper PDF
-
The Characteristics and Geographic Distribution of Robot Hubs in U.S. Manufacturing Establishments
March 2023
Working Paper Number:
CES-23-14
We use data from the Annual Survey of Manufactures to study the characteristics and geography of investments in robots across U.S. manufacturing establishments. We find that robotics adoption and robot intensity (the number of robots per employee) is much more strongly related to establishment size than age. We find that establishments that report having robotics have higher capital expenditures, including higher information technology (IT) capital expenditures. Also, establishments are more likely to have robotics if other establishments in the same Core-Based Statistical Area (CBSA) and industry also report having robotics. The distribution of robots is highly skewed across establishments' locations. Some locations, which we call Robot Hubs, have far more robots than one would expect even after accounting for industry and manufacturing employment. We characterize these Robot Hubs along several industry, demographic, and institutional dimensions. The presence of robot integrators and higher levels of union membership are positively correlated with being a Robot Hub.
View Full
Paper PDF
-
Age and High-Growth Entrepreneurship
April 2018
Working Paper Number:
CES-18-23
Many observers, and many investors, believe that young people are especially likely to produce the most successful new firms. We use administrative data at the U.S. Census Bureau to study the ages of founders of growth-oriented start-ups in the past decade. Our primary finding is that successful entrepreneurs are middle-aged, not young. The mean founder age for the 1 in 1,000 fastest growing new ventures is 45.0. The findings are broadly similar when considering high-technology sectors, entrepreneurial hubs, and successful firm exits. Prior experience in the specific industry predicts much greater rates of entrepreneurial success. These findings strongly reject common hypotheses that emphasize youth as a key trait of successful entrepreneurs.
View Full
Paper PDF
-
The Annual Survey of Entrepreneurs: An Introduction
November 2015
Working Paper Number:
CES-15-40R
The Census Bureau continually seeks to improve its measures of the U.S. economy as part of its mission. In some cases this means expanding or updating the content of its existing surveys, expanding the use of administrative data, and/or exploring the use of privately collected data. When these options cannot provide the needed data, the Census Bureau may consider fielding a new survey to fill the gap. This paper describes one such new survey, the Annual Survey of Entrepreneurs (ASE). Innovations in content, format, and process are designed to provide high-quality, timely, frequent information on the activities of one of the important drivers of economic growth: entrepreneurship. The ASE is collected through a partnership of the Census Bureau with the Kauffman Foundation and the Minority Business Development Agency. The first wave of the ASE collection started in fall of 2015 (for reference period 2014) and results will be released in summer 2016. Qualified researchers on approved projects will be able to access micro data from the ASE through the Federal Statistical Research Data Center (FSRDC) network.
View Full
Paper PDF
-
Innovation and Appropriability: Revisiting the Role of Intellectual Property
March 2022
Working Paper Number:
CES-22-09
It is more than 25 years since the authors of the Yale and Carnegie surveys studied how firms seek to protect the rents from innovation. In this paper, we revisit that question using a nationally representative sample of firms over the period 2008-2015, with the goal of updating and extending a set of stylized facts that has been influential for our understanding of the economics of innovation. There are five main findings. First, while patenting firms are relatively uncommon in the economy, they account for an overwhelming share of R&D spending. Second, utility patents are considered less important than other forms of IP protection, like trade secrets, trademarks, and copyrights. Third, industry differences explain a great deal of the level of firms' engagement with IP, with high-tech firms on average being more active on all forms of IP. Fourth, we do not find any significant difference in the use of IP strategies across firms at different points of their life cycle. Lastly, unlike age, firms of different size appear to manage IP significantly differently. On average, larger firms tend to engage much more extensively in the protection of IP, and this pattern cannot be easily explained by differences in the type of R&D or innovation produced by a firm. We also discuss the implications of these findings for innovation research and policy.
View Full
Paper PDF
-
Data in Action: Data-Driven Decision Making in U.S. Manufacturing
January 2016
Working Paper Number:
CES-16-06
Manufacturing in America has become significantly more data-intensive. We investigate the adoption, performance effects and organizational complementarities of data-driven decision making (DDD) in the U.S. Using data collected by the Census Bureau for 2005 and 2010, we observe the extent to which manufacturing firms track and use data to guide decision making, as well as their investments in information technology (IT) and the use of other structured management practices. Examining a representative sample of over 18,000 plans, we find that adoption of DDD is earlier and more prevalent among larger, older plants belonging to multi-unit firms. Smaller single-establishment firms adopt later but have a higher correlation with performance than similar non-adopters. Using a fixed-effects estimator, we find the average value-added for later DDD adopters to be 3% greater than non-adopters, controlling for other inputs to production. This effect is distinct from that associated with IT and other structured management practices and is concentrated among single-unit firms. Performance improves after plants adopt DDD, but not before ' consistent with a causal relationship. However, DDD-related performance differentials decrease over time for early and late adopters, consistent with firm learning and development of organizational complementarities. Formal complementarity tests suggest that DDD and high levels of IT capital reinforce each other, as do DDD and skilled workers. For some industries, the benefits of DDD adoption appear to be greater for plants that delegate some decision making to frontline workers.
View Full
Paper PDF
-
IMMIGRANT ENTREPRENEURS AND INNOVATION IN THE U.S. HIGH-TECH SECTOR
February 2019
Working Paper Number:
CES-19-06
We estimate differences in innovation behavior between foreign versus U.S.-born entrepreneurs in high-tech industries. Our data come from the Annual Survey of Entrepreneurs, a random sample of firms with detailed information on owner characteristics and innovation activities. We find uniformly higher rates of innovation in immigrant-owned firms for 15 of 16 different innovation measures; the only exception is for copyright/trademark. The immigrant advantage holds for older firms as well as for recent start-ups and for every level of the entrepreneur's education. The size of the estimated immigrant-native differences in product and process innovation activities rises with detailed controls for demographic and human capital characteristics but falls for R&D and patenting. Controlling for finance, motivations, and industry reduces all coefficients, but for most measures and specifications immigrants are estimated to have a sizable advantage in innovation.
View Full
Paper PDF