Recent studies argue that the use of information technology is a significant source of U.S. productivity growth. Official U.S. data on this use have been scarce. New official data on the use of electronic business processes (business processes such as procurement, payroll, inventory, etc.,conducted over computer networks) in the manufacturing sector of the United States were recently released. Preliminary estimates based on these data are consistent with some results in the literature. However, they also raise questions requiring additional detailed micro data analysis.
-
Computer Network Use and Firms' Productivity Performance: The United States vs. Japan
September 2008
Working Paper Number:
CES-08-30
This paper examines the relationship between computer network use and firms' productivity performance, using micro-data of the United States and Japan. To our knowledge, this is the first comparative analysis using firm-level data for the manufacturing sector of both countries. We find that the links between IT and productivity differ between U.S. and Japanese manufacturing. Computer networks have positive and significant links with labor productivity in both countries. However, that link is roughly twice as large in the U.S. as in Japan. Differences in how businesses use computers have clear links with productivity for U.S. manufacturing, but not in Japan. For the United States, the coefficients of the intensity of network use are positive and increase with the number of processes. Coefficients of specific uses of those networks are positive and significant. None of these coefficients are significant for Japan. Our findings are robust to alternative econometric specifications. They also are robust to expanding our sample from single-unit manufacturing firms, which are comparable in the two data sets, to the entire manufacturing sector in each country, as well as to the wholesale and retail sector of Japan.
View Full
Paper PDF
-
How Businesses Use Information Technology: Insights for Measuring Technology and Productivity
June 2006
Working Paper Number:
CES-06-15
Business use of computers in the United States dates back fifty years. Simply investing in information technology is unlikely to offer a competitive advantage today. Differences in how businesses use that technology should drive differences in economic performance. Our previous research found that one business use ' computers linked into networks ' is associated with significantly higher labor productivity. In this paper, we extend our analysis with new information about the ways that businesses use their networks. Those data show that businesses conduct a variety of general processes over computer networks, such as order taking, inventory monitoring, and logistics tracking, with considerable heterogeneity among businesses. We find corresponding empirical diversity in the relationship between these on-line processes and productivity, supporting the heterogeneity hypothesis. On-line supply chain activities such as order tracking and logistics have positive and statistically significant productivity impacts, but not processes associated with production, sales, or human resources. The productivity impacts differ by plant age, with higher impacts in new plants. This new information about the ways businesses use information technology yields vital raw material for understanding how using information technology improves economic performance.
View Full
Paper PDF
-
Computer Networks and U.S. Manufacturing Plant Productivity: New Evidence from the CNUS Data
January 2002
Working Paper Number:
CES-02-01
How do computers affect productivity? Many recent studies argue that using information technology, particularly computers, is a significant source of U.S. productivity growth. The specific mechanism remains elusive. Detailed data on the use of computers and computer networks have been scarce. Plant-level data on the use of computer networks and electronic business processes in the manufacturing sector of the United States were collected for the first time in 1999. Using these data, we find strong links between labor productivity and the presence of computer networks. We find that average labor productivity is higher in plants with networks. Computer networks have a positive and significant effect on plant labor productivity after controlling for multiple factors of production and plant characteristics. Networks increase estimated labor productivity by roughly 5 percent, depending on model specification. Model specifications that account for endogenous computer networks also show a positive and significant relationship. Our work differs from others in several important aspects. First, ours is the first study that directly links the use of computer networks to labor productivity using plant-level data for the entire U.S. manufacturing sector. Second, we extend the existing model relating computers to productivity by including materials as an explicit factor input. Third, we test for possible endogeneity problems associated with the computer network variable.
View Full
Paper PDF
-
Computer Investment, Computer Networks and Productivity
January 2005
Working Paper Number:
CES-05-01
Researchers in a large empirical literature find significant relationships between computers and labor productivity, but the estimated size of that relationship varies considerably. In this paper, we estimate the relationships among computers, computer networks, and plant-level productivity in U.S. manufacturing. Using new data on computer investment, we develop a sample with the best proxies for computer and total capital that the data allow us to construct. We find that computer networks and computer inputs have separate, positive, and significant relationships with U.S. manufacturing plant-level productivity. Keywords: computer input; information technology; labor productivity
View Full
Paper PDF
-
Measuring U.S. Innovative Activity
March 2007
Working Paper Number:
CES-07-11
Innovation has long been credited as a leading source of economic strength and vitality in the United States because it leads to new goods and services and increases productivity, leading to better living standards. Better measures of innovative activities'activities including but not limited to innovation alone'could improve what we know about the sources of productivity and economic growth. The U.S. Census Bureau either currently collects, or has collected, data on some measures of innovative activities, such as the diffusion of innovations and technologies, human and organizational capital, entrepreneurship and other worker and firm characteristics, and the entry and exit of businesses, that research shows affect productivity and other measures of economic performance. But developing an understanding of how those effects work requires more than just measures of innovative activity. It also requires solid statistical information about core measures of the economy: that is, comprehensive coverage of all industries, including improved measures of output and sales and additional information on inputs and purchased materials at the micro (enterprise) level for the same economic unit over time (so the effects can be measured). Filling gaps in core data would allow us to rule out the possibility that a measure of innovative activity merely proxies for something that is omitted from or measured poorly in the core data, provide more information about innovative activities, and strengthen our ability to evaluate the performance of the entire economy. These gaps can be filled by better integrating existing data and by more structured collections of new data.
View Full
Paper PDF
-
Measuring the Electronic Economy: Current Status and Next Steps
June 2000
Working Paper Number:
CES-00-10
The recent growth of consumer retailing over the Internet draws attention to the electronic economy. However, businesses also conduct other business processes over computer networks, and many have been doing so for some time. Uses of computer networks attract attention because of assertions that they lead to new products and services, new delivery methods, streamlined or re-engineered business processes, new business structures, and enhanced business performance. These changes, in turn, potentially affect the performance of the entire economy, including economic growth, productivity, prices, employment, trade, and the structures of businesses, regions, and markets. Evaluating these assertions, and their effects on economic performance, requires solid statistical information about the electronic economy. This paper develops principles for identifying information critical to measuring the size and evaluating the potential effects of the electronic economy, relates that information to current data collection programs, and notes relevant measurement issues. Some of the required information about the electronic economy can be collected by adding questions to existing surveys, making the scope of existing surveys consistent, or developing new surveys. However, many key pieces of information pose significant challenges to economic measurement. While some of those challenges are specific to the electronic economy, others are long-standing ones. Interest in the electronic economy highlights the importance of continuing attempts to address these challenges. Improving and enhancing the statistical system to provide information about the electronic economy, therefore, would also substantially improve the baseline information available for evaluating the performance of the entire economy.
View Full
Paper PDF
-
Computer Networks and Productivity Revisited: Does Plant Size Matter? Evidence and Implications
September 2010
Working Paper Number:
CES-10-25
Numerous studies have documented a positive association between information technology (IT) investments and business- and establishment-level productivity, but these studies usually pay sole or disporportionate attention to small- or medium-sized entities. In this paper, we revisit the evidence for manufacturing plants presented in Atrostic and Nguyen (2005) and show that the positive relationship between computer networks and labor productivity is only found among small- and medium-sized plants. Indeed, for larger plants the relationship is negative, and employment-weighted estimates indicate computer networks have a negative relationship with the productivity of employees, on average. These findings indicate that computer network investments may have an ambiguous relationship with aggregate labor productivity growth.
View Full
Paper PDF
-
Tracking Firm Use of AI in Real Time: A Snapshot from the Business Trends and Outlook Survey
March 2024
Working Paper Number:
CES-24-16
Timely and accurate measurement of AI use by firms is both challenging and crucial for understanding the impacts of AI on the U.S. economy. We provide new, real-time estimates of current and expected future use of AI for business purposes based on the Business Trends and Outlook Survey for September 2023 to February 2024. During this period, bi-weekly estimates of AI use rate rose from 3.7% to 5.4%, with an expected rate of about 6.6% by early Fall 2024. The fraction of workers at businesses that use AI is higher, especially for large businesses and in the Information sector. AI use is higher in large firms but the relationship between AI use and firm size is non-monotonic. In contrast, AI use is higher in young firms although, on an employment-weighted basis, is U-shaped in firm age. Common uses of AI include marketing automation, virtual agents, and data/text analytics. AI users often utilize AI to substitute for worker tasks and equipment/software, but few report reductions in employment due to AI use. Many firms undergo organizational changes to accommodate AI, particularly by training staff, developing new workflows, and purchasing cloud services/storage. AI users also exhibit better overall performance and higher incidence of employment expansion compared to other businesses. The most common reason for non-adoption is the inapplicability of AI to the business.
View Full
Paper PDF
-
Advanced Technologies Adoption and Use by U.S. Firms: Evidence from the Annual Business Survey
December 2020
Working Paper Number:
CES-20-40
We introduce a new survey module intended to complement and expand research on the causes and consequences of advanced technology adoption. The 2018 Annual Business Survey (ABS), conducted by the Census Bureau in partnership with the National Center for Science and Engineering Statistics (NCSES), provides comprehensive and timely information on the diffusion among U.S. firms of advanced technologies including artificial intelligence (AI), cloud computing, robotics, and the digitization of business information. The 2018 ABS is a large, nationally representative sample of over 850,000 firms covering all private, nonfarm sectors of the economy. We describe the motivation for and development of the technology module in the ABS, as well as provide a first look at technology adoption and use patterns across firms and sectors. We find that digitization is quite widespread, as is some use of cloud computing. In contrast, advanced technology adoption is rare and generally skewed towards larger and older firms. Adoption patterns are consistent with a hierarchy of increasing technological sophistication, in which most firms that adopt AI or other advanced business technologies also use the other, more widely diffused technologies. Finally, while few firms are at the technology frontier, they tend to be large so technology exposure of the average worker is significantly higher. This new data will be available to qualified researchers on approved projects in the Federal Statistical Research Data Center network.
View Full
Paper PDF
-
Development of Survey Questions on Robotics Expenditures and Use in U.S. Manufacturing Establishments
October 2018
Working Paper Number:
CES-18-44
The U.S. Census Bureau in partnership with a team of external researchers developed a series of questions on the use of robotics in U.S. manufacturing establishments. The questions include: (1) capital expenditures for new and used industrial robotic equipment in 2018, (2) number of industrial robots in operation in 2018, and (3) number of industrial robots purchased in 2018. These questions are to be included in the 2018 Annual Survey of Manufactures. This paper documents the background and cognitive testing process used for the development of these questions.
View Full
Paper PDF