The Nature of the Bias When Studying Only Linkable Person Records: Evidence from the American Community Survey
April 2014
Working Paper Number:
carra-2014-08
Abstract
Document Tags and Keywords
Keywords
Keywords are automatically generated using KeyBERT, a powerful and innovative
keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant
keywords.
By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the
text, highlighting the most significant topics and trends. This approach not only enhances searchability but
provides connections that go beyond potentially domain-specific author-defined keywords.
:
data,
data census,
census data,
survey data,
survey,
minority,
ethnicity,
bias,
record,
population,
associate,
citizen,
census bureau,
sampling,
resident,
datasets,
identifier,
linkage
Tags
Tags are automatically generated using a pretrained language model from spaCy, which excels at
several tasks, including entity tagging.
The model is able to label words and phrases by part-of-speech,
including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are
identified to contain references to specific institutions, datasets, and other organizations.
:
Social Security Administration,
American Community Survey,
Social Security Number,
Protected Identification Key,
National Opinion Research Center,
PIKed,
Person Validation System,
Federal Poverty Level,
Person Identification Validation System,
Individual Taxpayer Identification Numbers
Similar Working Papers
Similarity between working papers are determined by an unsupervised neural
network model
know as Doc2Vec.
Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the
capture of semantic meaning in a way that relates to the context of words within the document. The model learns to
associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as
document classification, clustering, and similarity detection by preserving the order and structure of words. The
document vectors are compared using cosine similarity/distance to determine the most similar working papers.
Papers identified with 🔥 are in the top 20% of similarity.
The 10 most similar working papers to the working paper 'The Nature of the Bias When Studying Only Linkable Person Records: Evidence from the American Community Survey' are listed below in order of similarity.
-
Working PaperUnderstanding the Quality of Alternative Citizenship Data Sources for the 2020 Census🔥
August 2018
Working Paper Number:
CES-18-38R
This paper examines the quality of citizenship data in self-reported survey responses compared to administrative records and evaluates options for constructing an accurate count of resident U.S. citizens. Person-level discrepancies between survey-collected citizenship data and administrative records are more pervasive than previously reported in studies comparing survey and administrative data aggregates. Our results imply that survey-sourced citizenship data produce significantly lower estimates of the noncitizen share of the population than would be produced from currently available administrative records; both the survey-sourced and administrative data have shortcomings that could contribute to this difference. Our evidence is consistent with noncitizen respondents misreporting their own citizenship status and failing to report that of other household members. At the same time, currently available administrative records may miss some naturalizations and capture others with a delay. The evidence in this paper also suggests that adding a citizenship question to the 2020 Census would lead to lower self-response rates in households potentially containing noncitizens, resulting in higher fieldwork costs and a lower-quality population count.View Full Paper PDF
-
Working PaperEstimating the U.S. Citizen Voting-Age Population (CVAP) Using Blended Survey Data, Administrative Record Data, and Modeling: Technical Report🔥
April 2023
Working Paper Number:
CES-23-21
This report develops a method using administrative records (AR) to fill in responses for nonresponding American Community Survey (ACS) housing units rather than adjusting survey weights to account for selection of a subset of nonresponding housing units for follow-up interviews and for nonresponse bias. The method also inserts AR and modeling in place of edits and imputations for ACS survey citizenship item nonresponses. We produce Citizen Voting-Age Population (CVAP) tabulations using this enhanced CVAP method and compare them to published estimates. The enhanced CVAP method produces a 0.74 percentage point lower citizen share, and it is 3.05 percentage points lower for voting-age Hispanics. The latter result can be partly explained by omissions of voting-age Hispanic noncitizens with unknown legal status from ACS household responses. Weight adjustments may be less effective at addressing nonresponse bias under those conditions.View Full Paper PDF
-
Working PaperDetermination of the 2020 U.S. Citizen Voting Age Population (CVAP) Using Administrative Records and Statistical Methodology Technical Report🔥
October 2020
Working Paper Number:
CES-20-33
This report documents the efforts of the Census Bureau's Citizen Voting-Age Population (CVAP) Internal Expert Panel (IEP) and Technical Working Group (TWG) toward the use of multiple data sources to produce block-level statistics on the citizen voting-age population for use in enforcing the Voting Rights Act. It describes the administrative, survey, and census data sources used, and the four approaches developed for combining these data to produce CVAP estimates. It also discusses other aspects of the estimation process, including how records were linked across the multiple data sources, and the measures taken to protect the confidentiality of the data.View Full Paper PDF
-
Working PaperPredicting the Effect of Adding a Citizenship Question to the 2020 Census🔥
June 2019
Working Paper Number:
CES-19-18
The addition of a citizenship question to the 2020 census could affect the self-response rate, a key driver of the cost and quality of a census. We find that citizenship question response patterns in the American Community Survey (ACS) suggest that it is a sensitive question when asked about administrative record noncitizens but not when asked about administrative record citizens. ACS respondents who were administrative record noncitizens in 2017 frequently choose to skip the question or answer that the person is a citizen. We predict the effect on self-response to the entire survey by comparing mail response rates in the 2010 ACS, which included a citizenship question, with those of the 2010 census, which did not have a citizenship question, among households in both surveys. We compare the actual ACS-census difference in response rates for households that may contain noncitizens (more sensitive to the question) with the difference for households containing only U.S. citizens. We estimate that the addition of a citizenship question will have an 8.0 percentage point larger effect on self-response rates in households that may have noncitizens relative to those with only U.S. citizens. Assuming that the citizenship question does not affect unit self-response in all-citizen households and applying the 8.0 percentage point drop to the 28.1 % of housing units potentially having at least one noncitizen would predict an overall 2.2 percentage point drop in self-response in the 2020 census, increasing costs and reducing the quality of the population count.View Full Paper PDF
-
Working PaperAssessing Coverage and Quality of the 2007 Prototype Census Kidlink Database
September 2015
Working Paper Number:
carra-2015-07
The Census Bureau is conducting research to expand the use of administrative records data in censuses and surveys to decrease respondent burden and reduce costs while improving data quality. Much of this research (e.g., Rastogi and O''Hara (2012), Luque and Bhaskar (2014)) hinges on the ability to integrate multiple data sources by linking individuals across files. One of the Census Bureau's record linkage methodologies for data integration is the Person Identification Validation System or PVS. PVS assigns anonymous and unique IDs (Protected Identification Keys or PIKs) that serve as linkage keys across files. Prior research showed that integrating 'known associates' information into PVS's reference files could potentially enhance PVS's PIK assignment rates. The term 'known associates' refers to people that are likely to be associated with each other because of a known common link (such as family relationships or people sharing a common address), and thus, to be observed together in different files. One of the results from this prior research was the creation of the 2007 Census Kidlink file, a child-level file linking a child's Social Security Number (SSN) record to the SSN of those identified as the child's parents. In this paper, we examine to what extent the 2007 Census Kidlink methodology was able to link parents SSNs to children SSN records, and also evaluate the quality of those links. We find that in approximately 80 percent of cases, at least one parent was linked to the child's record. Younger children and noncitizens have a higher percentage of cases where neither parent could be linked to the child. Using 2007 tax data as a benchmark, our quality evaluation results indicate that in at least 90 percent of the cases, the parent-child link agreed with those found in the tax data. Based on our findings, we propose improvements to the 2007 Kidlink methodology to increase child-parent links, and discuss how the creation of the file could be operationalized moving forward.View Full Paper PDF
-
Working PaperPerson Matching in Historical Files using the Census Bureau's Person Validation System
September 2014
Working Paper Number:
carra-2014-11
The recent release of the 1940 Census manuscripts enables the creation of longitudinal data spanning the whole of the twentieth century. Linked historical and contemporary data would allow unprecedented analyses of the causes and consequences of health, demographic, and economic change. The Census Bureau is uniquely equipped to provide high quality linkages of person records across datasets. This paper summarizes the linkage techniques employed by the Census Bureau and discusses utilization of these techniques to append protected identification keys to the 1940 Census.View Full Paper PDF
-
Working PaperAssimilation and Coverage of the Foreign-Born Population in Administrative Records
April 2015
Working Paper Number:
carra-2015-02
The U.S. Census Bureau is researching ways to incorporate administrative data in decennial census and survey operations. Critical to this work is an understanding of the coverage of the population by administrative records. Using federal and third party administrative data linked to the American Community Survey (ACS), we evaluate the extent to which administrative records provide data on foreign-born individuals in the ACS and employ multinomial logistic regression techniques to evaluate characteristics of those who are in administrative records relative to those who are not. We find that overall, administrative records provide high coverage of foreign-born individuals in our sample for whom a match can be determined. The odds of being in administrative records are found to be tied to the processes of immigrant assimilation - naturalization, higher English proficiency, educational attainment, and full-time employment are associated with greater odds of being in administrative records. These findings suggest that as immigrants adapt and integrate into U.S. society, they are more likely to be involved in government and commercial processes and programs for which we are including data. We further explore administrative records coverage for the two largest race/ethnic groups in our sample - Hispanic and non-Hispanic single-race Asian foreign born, finding again that characteristics related to assimilation are associated with administrative records coverage for both groups. However, we observe that neighborhood context impacts Hispanics and Asians differently.View Full Paper PDF
-
Working PaperEstimating Record Linkage False Match Rate for the Person Identification Validation System
July 2014
Working Paper Number:
carra-2014-02
The Census Bureau Person Identification Validation System (PVS) assigns unique person identifiers to federal, commercial, census, and survey data to facilitate linkages across files. PVS uses probabilistic matching to assign a unique Census Bureau identifier for each person. This paper presents a method to measure the false match rate in PVS following the approach of Belin and Rubin (1995). The Belin and Rubin methodology requires truth data to estimate a mixture model. The parameters from the mixture model are used to obtain point estimates of the false match rate for each of the PVS search modules. The truth data requirement is satisfied by the unique access the Census Bureau has to high quality name, date of birth, address and Social Security (SSN) data. Truth data are quickly created for the Belin and Rubin model and do not involve a clerical review process. These truth data are used to create estimates for the Belin and Rubin parameters, making the approach more feasible. Both observed and modeled false match rates are computed for all search modules in federal administrative records data and commercial data.View Full Paper PDF
-
Working PaperThe Person Identification Validation System (PVS): Applying the Center for Administrative Records Research and Applications' (CARRA) Record Linkage Software
July 2014
Working Paper Number:
carra-2014-01
The Census Bureau's Person Identification Validation System (PVS) assigns unique person identifiers to federal, commercial, census, and survey data to facilitate linkages across and within files. PVS uses probabilistic matching to assign a unique Census Bureau identifier for each person. The PVS matches incoming files to reference files created with data from the Social Security Administration (SSA) Numerical Identification file, and SSA data with addresses obtained from federal files. This paper describes the PVS methodology from editing input data to creating the final file.View Full Paper PDF
-
Working PaperThe Impact of Household Surveys on 2020 Census Self-Response
July 2022
Working Paper Number:
CES-22-24
Households who were sampled in 2019 for the American Community Survey (ACS) had lower self-response rates to the 2020 Census. The magnitude varied from -1.5 percentage point for household sampled in January 2019 to -15.1 percent point for households sampled in December 2019. Similar effects are found for the Current Population Survey (CPS) as well.View Full Paper PDF