CREAT: Census Research Exploration and Analysis Tool

Predicting the Effect of Adding a Citizenship Question to the 2020 Census

June 2019

Working Paper Number:

CES-19-18

Abstract

The addition of a citizenship question to the 2020 census could affect the self-response rate, a key driver of the cost and quality of a census. We find that citizenship question response patterns in the American Community Survey (ACS) suggest that it is a sensitive question when asked about administrative record noncitizens but not when asked about administrative record citizens. ACS respondents who were administrative record noncitizens in 2017 frequently choose to skip the question or answer that the person is a citizen. We predict the effect on self-response to the entire survey by comparing mail response rates in the 2010 ACS, which included a citizenship question, with those of the 2010 census, which did not have a citizenship question, among households in both surveys. We compare the actual ACS-census difference in response rates for households that may contain noncitizens (more sensitive to the question) with the difference for households containing only U.S. citizens. We estimate that the addition of a citizenship question will have an 8.0 percentage point larger effect on self-response rates in households that may have noncitizens relative to those with only U.S. citizens. Assuming that the citizenship question does not affect unit self-response in all-citizen households and applying the 8.0 percentage point drop to the 28.1 % of housing units potentially having at least one noncitizen would predict an overall 2.2 percentage point drop in self-response in the 2020 census, increasing costs and reducing the quality of the population count.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
survey, respondent, ethnicity, ethnic, hispanic, surveys censuses, immigrant, immigration, citizen, resident, census household, citizenship, census responses

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, Social Security Administration, Center for Economic Studies, Office of Management and Budget, Social Security, Postal Service, American Community Survey, Social Security Number, Cornell Institute for Social and Economic Research, Protected Identification Key, Census Bureau Disclosure Review Board, Disclosure Review Board, Person Identification Validation System, Individual Taxpayer Identification Numbers, Census Numident, Federal Statistical Research Data Center

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with πŸ”₯ are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Predicting the Effect of Adding a Citizenship Question to the 2020 Census' are listed below in order of similarity.