CREAT: Census Research Exploration and Analysis Tool

Gross Job Flows for the U.S. Manufacturing Sector: Measurement from the Longitudinal Research Database

December 2006

Working Paper Number:

CES-06-30

Abstract

Measures of job creation and destruction are now produced regularly by the U.S. statistical agencies. The Bureau of Labor Statistics releases via the Business Employment Dynamics (BED) on a quarterly basis measures of job creation and destruction for the U.S. nonfarm business sector and related disaggregation by industrial sector and size class. The U.S. Census Bureau has developed the Longitudinal Business Database (LBD) covering the nonfarm business sector that has been used to produce research analysis and special tabulations including tabulations of job creation and destruction. Both of these data programs build upon the measurement methods and data analysis of job creation and destruction measures from the Longitudinal Research Database (LRD) developed and published by Davis, Haltiwanger and Schuh (1996). In this paper, the LRD based estimates of job creation and destruction are updated and made available for consistent annual and quarterly series from 1972-1998. While the BED and LBD programs are more comprehensive in scope than the LRD, the extensive development of the LRD permits the construction of measures of job creation and destruction for a rich array of employer characteristics including industry, size, business age, ownership structure, location and wage structure. The updated series that are released with this working paper provide measures along each of these dimensions. The paper describes in detail the changes in the processing of the Annual Survey of Manufactures over the 1972-1998 period that are important to incorporate by users of the LRD at Census Research Data Centers as well as users of products from the LRD such as job creation and destruction.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
manufacturing, industrial, quarterly, growth, employee, employ, labor, longitudinal, recession, employment growth, turnover, employment estimates, employment data, workforce, employment production, firms employment, employment dynamics, labor statistics, employment statistics, census employment

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Census of Manufactures, Annual Survey of Manufactures, Standard Industrial Classification, Bureau of Labor Statistics, Longitudinal Research Database, National Bureau of Economic Research, National Establishment Time Series, Longitudinal Business Database, Research Data Center, North American Industry Classification System, Longitudinal Employer Household Dynamics, Current Employment Statistics, Quarterly Workforce Indicators, Quarterly Census of Employment and Wages, Business Employment Dynamics, 2010 Census, Labor Turnover Survey

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Gross Job Flows for the U.S. Manufacturing Sector: Measurement from the Longitudinal Research Database' are listed below in order of similarity.