CREAT: Census Research Exploration and Analysis Tool

Diversity and Labor Market Outcomes in the Economics Profession

July 2022

Working Paper Number:

CES-22-26

Abstract

While the lack of gender and racial diversity in economics in academia (for students and professors) is well-established, less is known about the overall placement and earnings of economists by gender and race. Understanding demand-side factors is important, as improvements in the supply side by diversifying the pipeline alone may not be enough to improve equity in the profession. Using the Survey of Earned Doctorates (SED) linked to Longitudinal Employer-Household Dynamics (LEHD) jobs data, we examine placements and earnings for economists working in the U.S. after receiving a PhD by gender and race. We find enormous dispersion in pay for economists within and across sectors that grows over time. Female PhD economists earn about 12 percent less than their male colleagues on average; Black PhD economists earn about 15 percent less than their white counterparts on average; and overall underrepresented minority PhD economists earn about 8 percent less than their white counterparts. These pay disparities are attenuated in some sectors and when controlling for rank of PhD granting institution and employer.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
economist, econometric, minority, black, heterogeneity, hiring, salary, disadvantaged, socioeconomic, disparity


Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Diversity and Labor Market Outcomes in the Economics Profession' are listed below in order of similarity.