CREAT: Census Research Exploration and Analysis Tool

Developing Content for the Management and Organizational Practices Survey-Hospitals (MOPS-HP)

September 2021

Working Paper Number:

CES-21-25

Abstract

Nationally representative U.S. hospital data does not exist on management practices, which have been shown to be related to both clinical and financial performance using past data collected in the World Management Survey (WMS). This paper describes the U.S. Census Bureau's development of content for the Management and Organizational Practices Survey Hospitals (MOPS-HP) that is similar to data collected in the MOPS conducted for the manufacturing sector in 2010 and 2015 and the 2009 WMS. Findings from cognitive testing interviews with 18 chief nursing officers and 13 chief financial officers at 30 different hospitals across 7 states and the District of Columbia led to using industry-tested terminology, to confirming chief nursing officers as MOPS-HP respondents and their ability to provide recall data, and to eliminating questions that tested poorly. Hospital data collected in the MOPS-HP would be the first nationally representative data on management practices with queries on clinical key performance indicators, financial and hospital-wide patient care goals, addressing patient care problems, clinical team interactions and staffing, standardized clinical protocols, and incentives for medical record documentation. The MOPS-HP's purpose is not to collect COVID-19 pandemic information; however, data measuring hospital management practices prior to and during the COVID-19 pandemic are a byproduct of the survey's one-year recall period (2019 and 2020).

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
data, payroll, survey, managerial, manager, organizational, patent, department, reporting, management, record, healthcare, medicare

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Annual Survey of Manufactures, Service Annual Survey, Center for Economic Studies, Economic Census, National Center for Health Statistics, Management and Organizational Practices Survey, COVID-19, Harvard Business School

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Developing Content for the Management and Organizational Practices Survey-Hospitals (MOPS-HP)' are listed below in order of similarity.