We measure the impact of a drastic new technology for producing steel -- the minimill -- on the aggregate productivity of U.S. steel producers, using unique plant-level data between 1963 and 2002. We find that the sharp increase in the industry's productivity is linked to this new technology, and operates through two distinct mechanisms. First, minimills displaced the older technology, called vertically integrated production, and this reallocation of output was responsible for a third of the increase in the industry's productivity. Second, increased competition, due to the expansion of minimills, drove a substantial reallocation process within the group of vertically integrated producers, driving a resurgence in their productivity, and consequently of the industry's productivity as a whole.
-
Are All Trade Protection Policies Created Equal? Empirical Evidence for Nonequivalent Market Power Effects of Tariffs and Quotas
September 2010
Working Paper Number:
CES-10-27
The steel industry has been protected by a wide variety of trade policies, both tariff- and quota-based, over the past decades. This extensive heterogeneity in trade protection provides the opportunity to examine the well-established theoretical literature predicting nonequivalent effects of tariffs and quotas on domestic firms' market power. Robust to a variety of empirical specifications with U.S. Census data on the population of U.S. steel plants from 1967-2002, we find evidence for significant market power effects for binding quota-based protection, but not for tariff-based protection. There is only weak evidence that antidumping protection increases market power.
View Full
Paper PDF
-
Decomposing Aggregate Productivity
July 2022
Working Paper Number:
CES-22-25
In this note, we evaluate the sensitivity of commonly-used decompositions for aggregate productivity. Our analysis spans the universe of U.S. manufacturers from 1977 to 2012 and we find that, even holding the data and form of the production function fixed, results on aggregate productivity are extremely sensitive to how productivity at the firm level is measured. Even qualitative statements about the levels of aggregate productivity and the sign of the covariance between productivity and size are highly dependent on how production function parameters are estimated. Despite these difficulties, we uncover some consistent facts about productivity growth: (1) labor productivity is consistently higher and less error-prone than measures of multi-factor productivity; (2) most productivity growth comes from growth within firms, rather than from reallocation across firms; (3) what growth does come from reallocation appears to be driven by net entry, primarily from the exit of relatively less-productive firms.
View Full
Paper PDF
-
Reallocation, Firm Turnover, and Efficiency: Selection on Productivity or Profitability?
September 2005
Working Paper Number:
CES-05-11
There is considerable evidence that producer-level churning contributes substantially to aggregate (industry) productivity growth, as more productive businesses displace less productive ones. However, this research has been limited by the fact that producer-level prices are typically unobserved; thus within-industry price differences are embodied in productivity measures. If prices reflect idiosyncratic demand or market power shifts, high 'productivity' businesses may not be particularly efficient, and the literature's findings might be better interpreted as evidence of entering businesses displacing less profitable, but not necessarily less productive, exiting businesses. In this paper, we investigate the nature of selection and productivity growth using data from industries where we observe producer-level quantities and prices separately. We show there are important differences between revenue and physical productivity. A key dissimilarity is that physical productivity is inversely correlated with plant-level prices while revenue productivity is positively correlated with prices. This implies that previous work linking (revenue-based) productivity to survival has confounded the separate and opposing effects of technical efficiency and demand on survival, understating the true impacts of both. We further show that young producers charge lower prices than incumbents, and as such the literature understates the productivity advantage of new producers and the contribution of entry to aggregate productivity growth.
View Full
Paper PDF
-
The Importance of Reallocations in Cyclical Productivity and Returns to Scale: Evidence from Plant-Level Data
March 2007
Working Paper Number:
CES-07-05
This paper provides new evidence that estimates based on aggregate data will understate the true procyclicality of total factor productivity. I examine plant-level data and show that some industries experience countercyclical reallocations of output shares among firms at different points in the business cycle, so that during recessions, less productive firms produce less of the total output, but during expansions they produce more. These reallocations cause overall productivity to rise during recessions, and do not reflect the actual path of productivity of a representative firm over the course of the business cycle. Such an effect (sometimes called the cleansing effect of recessions) may also bias aggregate estimates of returns to scale and help explain why decreasing returns to scale are found at the industry-level data.
View Full
Paper PDF
-
Exporting and Productivity
May 2000
Working Paper Number:
CES-00-07
Exporting is often touted as a way to increase economic growth. This paper examines whether exporting has played any role in increasing productivity growth in U.S. manufacturing. Contemporaneous levels of exports and productivity are indeed positively correlated across manufacturing industries. However, tests on industry data show causality from productivity to exporting but not the reverse. While exporting plants have substantially higher productivity levels, we find no evidence that exporting increases plant productivity growth rates. However, within the same industry, exporters do grow faster than non-exporters in terms of both shipments and employment. We show that exporting is associated with the reallocation of resources from less efficient to more efficient plants. In the aggregate, these reallocation effects are quite large, making up over 40 percent of total factor productivity growth in the manufacturing sector. Half of this reallocation to more productive plants occurs within industries and the direction of the reallocation is towards exporting plants. The positive contribution of exporters even shows up in import-competing industries and non-tradable sectors. The overall contribution of exporters to manufacturing productivity growth far exceeds their shares of employment and output.
View Full
Paper PDF
-
The Effects of Environmental Regulation on the Competiveness of U.S. Manufacturing
January 2011
Working Paper Number:
CES-11-03
Whether and to what extent environmental regulations influence the competitiveness of firms remains a hotly debated issue. Using detailed production data from tens of thousands of U.S. manufacturing plants drawn from Annual Survey of Manufactures, we estimate the effects of environmental regulations'captured by the Clean Air Act Amendments' division of counties into pollutant-specific nonattainment and attainment categories'on manufacturing plants' total factor productivity (TFP) levels. We find that among surviving polluting plants, a nonattainment designation is associated with a roughly 2.6 percent decline in TFP. The regulations governing ozone have particularly discernable effects on productivity, though effects are also seen among particulates and sulfur dioxide emitters. Carbon monoxide nonattainment, on the other hand, appears to increase measured TFP, though this appears to be concentrated among refineries. When we apply corrections for two likely sources of positive bias in these estimates (price mismeasurement and sample selection on survival), we estimate that the total TFP loss for polluting plants in nonattaining counties is 4.8 percent. This corresponds to an annual lost output in the manufacturing sector of roughly $14.7 billion in 1987 dollars ($24.4 billion in 2009 dollars). These costs have important implications for both the intensity and location of firm expansions.
View Full
Paper PDF
-
Cementing Relationships: Vertical Integration, Foreclosure, Productivity, and Prices
July 2006
Working Paper Number:
CES-06-21
This paper looks at the reasons for and results of vertical integration, with specific regard to its possible effects on market power as proposed in the theoretical literature on foreclosure. It uses a rich data set on producers in the cement and ready-mixed concrete industries over a 34- year period to perform a detailed case study. There is little evidence that foreclosure effects are quantitatively important in these industries. Instead, prices fall, quantities rise, and entry rates remain unchanged when markets become more integrated. We suggest an alternative mechanism that is consistent with these patterns and provide additional evidence in support of it: namely, that higher productivity producers are more likely to vertically integrate, and as has been documented elsewhere, are also larger, more likely to grow and survive, and charge lower prices. We explore possible sources of vertically integrated producers' productivity advantage and find that the advantage is tied to firm size, possibly in part through improved logistics coordination, but not to several other possible explanations.
View Full
Paper PDF
-
The Impact of Vintage and Survival on Productivity: Evidence from Cohorts of U.S. Manufacturing Plants
May 2000
Working Paper Number:
CES-00-06
This paper examines the evolution of productivity in U.S. manufacturing plants from 1963 to 1992. We define a 'vintage effect' as the change in productivity of recent cohorts of new plants relative to earlier cohorts of new plants, and a 'survival effect' as the change in productivity of a particular cohort of surviving plants as it ages. The data show that both factors contribute to industry productivity growth, but play offsetting roles in determining a cohort's relative position in the productivity distribution. Recent cohorts enter with significantly higher productivity than earlier entrants did, while surviving cohorts show significant increases in productivity as they age. These two effects roughly offset each other, however, so there is a rough convergence in productivity across cohorts in 1992 and 1987. (JEL Code: D24, L6)
View Full
Paper PDF
-
Aggregate Productivity Growth: Lessons From Microeconomic Evidence
September 1998
Working Paper Number:
CES-98-12
In this study we focus on the role of the reallocation of activity across individual producers for aggregate productivity growth. A growing body of empirical analysis yields striking patterns in the behavior of establishment-level reallocation and productivity. Nevertheless, a review of existing studies yields a wide range of findings regarding the contribution of reallocation to aggregate productivity growth. Through our review of existing studies and our own sensitivity analysis, we find that reallocation plays a significant role in the changes in productivity growth at the industry level and that the impact of net entry is disproportionate since entering plants tend to displace less productive exiting plants, even after controlling for overall average growth in productivity. However, an important conclusion of our sensitivity analysis is that the quantitative contribution of reallocation to the aggregate change in productivity is sensitive to the decomposition methodology employed. Our findings also confirm and extend others in the literature that indicate that both learning and selection effects are important in this context. A novel aspect of our analysis is that we have examined the role of reallocation for aggregate productivity growth to a selected set of service sector industries. Our analysis considers the 4-digit industries that form the 3-digit industry automobile repair shops. We found tremendous churning in this industry with extremely large rates of entry and exit. Moreover, we found that productivity growth in the industry is dominated establishment data at Census, the results are quite striking and clearly call for further analysis.
View Full
Paper PDF
-
Technology Lock-In and Costs of Delayed Climate Policy
July 2023
Working Paper Number:
CES-23-33
This paper studies the implications of current energy prices for future energy efficiency and climate policy. Using U.S. Census microdata and quasi-experimental variation in energy prices, we first show that manufacturing plants that open when electricity prices are low consume more energy throughout their lifetime, regardless of current electricity prices. We then estimate that a persistent bias of technological change toward energy can explain the long-term effects of entry-year electricity prices on energy intensity. Overall, this 'technology lock-in' implies that increasing entry-year electricity prices by 10% would decrease a plant's energy intensity of production by 3% throughout its lifetime.
View Full
Paper PDF