CREAT: Census Research Exploration and Analysis Tool

Within and Across County Variation in SNAP Misreporting: Evidence from Linked ACS and Administrative Records

July 2014

Written by: Benjamin Cerf Harris

Working Paper Number:

carra-2014-05

Abstract

This paper examines sub-state spatial and temporal variation in misreporting of participation in the Supplemental Nutrition Assistance Program (SNAP) using several years of the American Community Survey linked to SNAP administrative records from New York (2008-2010) and Texas (2006-2009). I calculate county false-negative (FN) and false-positive (FP) rates for each year of observation and find that, within a given state and year, there is substantial heterogeneity in FN rates across counties. In addition, I find evidence that FN rates (but not FP rates) persist over time within counties. This persistence in FN rates is strongest among more populous counties, suggesting that when noise from sampling variation is not an issue, some counties have consistently high FN rates while others have consistently low FN rates. This finding is important for understanding how misreporting might bias estimates of sub-state SNAP participation rates, changes in those participation rates, and effects of program participation. This presentation was given at the CARRA Seminar, June 27, 2013

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimating, statistical, survey, respondent, state, country, rural, federal, population, poverty, sampling, resident, population survey

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Ordinary Least Squares, Current Population Survey, Survey of Income and Program Participation, Computer Assisted Telephone Interviews and Computer Assisted Personal Interviews, American Community Survey, Protected Identification Key, Computer Assisted Personal Interview, Temporary Assistance for Needy Families, Supplemental Nutrition Assistance Program, Person Identification Validation System, Center for Administrative Records Research and Applications, Personally Identifiable Information

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Within and Across County Variation in SNAP Misreporting: Evidence from Linked ACS and Administrative Records' are listed below in order of similarity.