CREAT: Census Research Exploration and Analysis Tool

Unemployment Insurance, Wage Pass-Through, and Endogenous Take-Up

September 2025

Working Paper Number:

CES-25-59

Abstract

This paper studies how unemployment insurance (UI) generosity affects reservation wages, re-employment wages, and benefit take-up. Using Benefit Accuracy Measurement (BAM) data, we estimate a cross-sectional elasticity of reservation wages with respect to weekly UI benefits of 0.014. Exploiting state variation in Pandemic Unemployment Assistance (PUA) intensity and the timing of federal supplements, we find that expanded benefits during COVID-19 increased reservation wages by 8'12 percent. Using CPS rotation data, we also document a 9 percent rise in re-employment wages for UI-eligible workers relative to ineligible workers. Over the same period, the UI take-up rate rose from roughly 30 to 40 percent; Probit estimates indicate that higher benefit levels, rather than changes in observables, account for this increase. A directed search model with an endogenous filing decision replicates these facts: generosity primarily operates through the extensive margin of take-up, which mutes the pass-through from benefits to wages.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
agency, earnings, labor, employment data, incentive, wages employment, effects employment, welfare, unemployment rates, employment statistics, filing, employment unemployment, unemployment insurance, benefit, unemployed, union, compensation, mandate, rates employment, endowment

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Bureau of Labor Statistics, Current Population Survey, Survey of Income and Program Participation, Department of Labor, North American Industry Classification System, Social and Economic Supplement, Centers for Disease Control and Prevention, Accommodation and Food Services, COVID-19

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Unemployment Insurance, Wage Pass-Through, and Endogenous Take-Up' are listed below in order of similarity.