This paper explores the role of capital measurement in determining the productivity of individual textile plants. In addition to gross book value of capital, we experiment with a perpetual inventory measure of capital and implicit (estimated) deflator associated with the age of the plant. Following the methodology of the earlier paper (Productivity Races I), we find that measures of productivity constructed from different measures of capital are highly correlated. Further, their association with alternative measures of economic performance is approximately the same. Nevertheless, the perpetual inventory measure of capital -- the most desirable measure from a theoretical perspective -- does consistently outperform the other two measures.
-
Productivity Races I: Are Some Productivuty Measures Better Than Others?
January 1997
Working Paper Number:
CES-97-02
In this study we construct twelve different measures of productivity at the plant level and test which measures of productivity are most closely associated with direct measures of economic performance. We first examine how closely correlated these measures are with various measures of profits. We then evaluate the extent to which each productivity measure is associated with lower rates of plant closure and faster plant growth (growth in employment, output, and capital). All measures of productivity considered are credible in the sense that highly productive plants, regardless of measure, are clearly more profitable, less likely to close, and grow faster. Nevertheless, labor productivity and measures of total factor productivity that are based on regression estimates of production functions are better predictors of plant growth and survival than factor share-based measures of total factor productivity (TFP). Measures of productivity that are based on several years of data appear to outperform measures of productivity that are based solely on data from the most recent year.
View Full
Paper PDF
-
Whittling Away At Productivity Dispersion Futher Notes: Persistent Dispersion or Measurement Error?
November 1996
Working Paper Number:
CES-96-11
This note considers several hypotheses regarding measurement error as a source of observed cross-sectional dispersion in plant-level productivity in the US textile industry. The hypotheses that reporting error and/or price rigidity in either materials and/or output account for a substantial portion of the observed dispersion in productivity are consistent with the data. Similarly, the hypothesis that transitory product niches or fashion effects lead to differential markups and consequently dispersion in observed productivity is consistent with the data. The hypothesis that transfer pricing problems lead to persistent differences in plant-level productivity, in contrast, does not appear to be consistent with the data. Finally, the hypothesis that some plants have permanent product niches that lead to dispersion in observed productivity does not appear to be consistent with data. In order to avoid imposing a strong functional form on the data, this note follows a non-parametric methodology developed in the early paper.
View Full
Paper PDF
-
Technology Locks, Creative Destruction And Non-Convergence In Productivity Levels
April 1995
Working Paper Number:
CES-95-06
This paper presents a simple solution to a new model that seeks to explain the distribution of plants across productivity levels within an industry, and empirically confirms some key predictions using the U.S. textile industry. In the model, plants are locked into a given productivity level, until they exit or retool. Convex costs of adjustment captures the fact that more productive plants expand faster. Provided there is technical change, productivity levels do not converge; the model achieves persistent dispersion in productivity levels within the context of a distortion free competitive equilibrium. The equilibrium, however, is rather turbulent; plants continually come on line with the cutting edge technology, gradually expand and finally exit or retool when they cease to recover their variable costs. The more productive plants create jobs, while the less productive destroy them. The model establishes a close link between productivity growth and dispersion in productivity levels; more rapid productivity growth leads to more widespread dispersion. This prediction is empirically confirmed. Additionally, the model provides an explanation for S-shaped diffusion.
View Full
Paper PDF
-
ARE FIXED EFFECTS FIXED? Persistence in Plant Level Productivity
May 1996
Working Paper Number:
CES-96-03
Estimates of production functions suffer from an omitted variable problem; plant quality is an omitted variable that is likely to be correlated with variable inputs. One approach is to capture differences in plant qualities through plant specific intercepts, i.e., to estimate a fixed effects model. For this technique to work, it is necessary that differences in plant quality are more or less fixed; if the "fixed effects" erode over time, such a procedure becomes problematic, especially when working with long panels. In this paper, a standard fixed effects model, extended to allow for serial correlation in the error term, is applied to a 16-year panel of textile plants. This parametric approach strongly accepts the hypothesis of fixed effects. They account for about one-third of the variation in productivity. A simple non-parametric approach, however, concludes that differences in plant qualities erode over time, that is plant qualities f-mix. Monte Carlo results demonstrate that this discrepancy comes from the parametric approach imposing an overly restrictive functional form on the data; if there were fixed effects of the magnitude measured, one would reject the hypothesis of f-mixing. For textiles, at least, the functional form of a fixed effects model appears to generate misleading conclusions. A more flexible functional form is estimated. The "fixed" effects actually have a half life of approximately 10 to 20 years, and they account for about one-half the variation in productivity.
View Full
Paper PDF
-
Whittling Away At Productivity Dispersion
March 1995
Working Paper Number:
CES-95-05
In any time period, in any industry, plant productivity levels differ widely and this dispersion is persistent. This paper explores the sources of this dispersion and their relative magnitudes in the textile industry. Plants that are measured as being more productive but pay higher wages are not necessarily more profitable; wage dispersion can account for approximately 15 percent of productivity dispersion. A plant that is highly productive today may not be as productive tomorrow. I develop a new method for measuring ex-ante dispersion and the percentage of dispersion "explained" by mean reversion. Mean reversion accounts for as much as one half the observed productivity dispersion. A portion of the dispersion, however, appears to reflect real quality differences between plants; plants that are measured as being more productive expand faster and are less likely to exit.
View Full
Paper PDF
-
Linking Investment Spikes and Productivity Growth: U.S. Food Manufacturing Industry
October 2008
Working Paper Number:
CES-08-36
We investigate the relationship between productivity growth and investment spikes using Census Bureau's plant-level data set for the U.S. food manufacturing industry. We find that productivity growth increases after investment spikes suggesting an efficiency gain or plants' learning effect. However, efficiency and the learning period associated with investment spikes differ among plants' productivity quartile ranks implying the differences in the plants' investment types such as expansionary, replacement or retooling. We find evidence of both convex and non-convex types of adjustment costs where lumpy plant-level investments suggest the possibility of non-convex adjustment costs and hazard estimation results suggest the possibility of convex adjustment costs. The downward sloping hazard can be due to the unobserved heterogeneity across plants such as plants' idiosyncratic obsolescence caused by different R&D capabilities and implies the existence of convex adjustment costs. Food plants frequently invest during their first few years of operation and high productivity plants postpone investing due to high fixed costs.
View Full
Paper PDF
-
The Impact of Vintage and Survival on Productivity: Evidence from Cohorts of U.S. Manufacturing Plants
May 2000
Working Paper Number:
CES-00-06
This paper examines the evolution of productivity in U.S. manufacturing plants from 1963 to 1992. We define a 'vintage effect' as the change in productivity of recent cohorts of new plants relative to earlier cohorts of new plants, and a 'survival effect' as the change in productivity of a particular cohort of surviving plants as it ages. The data show that both factors contribute to industry productivity growth, but play offsetting roles in determining a cohort's relative position in the productivity distribution. Recent cohorts enter with significantly higher productivity than earlier entrants did, while surviving cohorts show significant increases in productivity as they age. These two effects roughly offset each other, however, so there is a rough convergence in productivity across cohorts in 1992 and 1987. (JEL Code: D24, L6)
View Full
Paper PDF
-
Computer Investment, Computer Networks and Productivity
January 2005
Working Paper Number:
CES-05-01
Researchers in a large empirical literature find significant relationships between computers and labor productivity, but the estimated size of that relationship varies considerably. In this paper, we estimate the relationships among computers, computer networks, and plant-level productivity in U.S. manufacturing. Using new data on computer investment, we develop a sample with the best proxies for computer and total capital that the data allow us to construct. We find that computer networks and computer inputs have separate, positive, and significant relationships with U.S. manufacturing plant-level productivity. Keywords: computer input; information technology; labor productivity
View Full
Paper PDF
-
Estimating Capital Efficiency Schedules Within Production Functions
May 1992
Working Paper Number:
CES-92-04
The appropriate method for aggregating capital goods across vintages to produce a single capital stock measure has long been a contentious issue, and the literature covering this topic is quite extensive. This paper presents a methodology that estimates efficiency schedules within a production function, allowing the data to reveal how the efficiency of capital goods evolve as they age. Specifically we insert a parameterized investment stream into the position of a capital variable in a production function, and then estimate the parameters of the production function simultaneously with the parameters of the investment stream. Plant level panel data for a select group of steel plants employing a common technology are used to estimate the model. Our primary finding is that when using a simple Cobb Douglas production function, the estimated efficiency schedules appear to follow a geometric pattern, which is consistent with the estimates of economic depreciation of Hulten and Wykoff (1981). Results from more flexible functional forms produced much less precise and unreliable estimates.
View Full
Paper PDF
-
The Dynamics of Plant-Level Productivity in U.S. Manufacturing
July 2006
Working Paper Number:
CES-06-20
Using a unique database that covers the entire U.S. manufacturing sector from 1976 until 1999, we estimate plant-level total factor productivity for a large number of plants. We characterize time series properties of plant-level idiosyncratic shocks to productivity, taking into account aggregate manufacturing-sector shocks and industry-level shocks. Plant-level heterogeneity and shocks are a key determinant of the cross-sectional variations in output. We compare the persistence and volatility of the idiosyncratic plant-level shocks to those of aggregate productivity shocks estimated from aggregate data. We find that the persistence of plant level shocks is surprisingly low-we estimate an average autocorrelation of the plantspecific productivity shock of only 0.37 to 0.41 on an annual basis. Finally, we find that estimates of the persistence of productivity shocks from aggregate data have a large upward bias. Estimates of the persistence of productivity shocks in the same data aggregated to the industry level produce autocorrelation estimates ranging from 0.80 to 0.91 on an annual basis. The results are robust to the inclusion of various measures of lumpiness in investment and job flows, different weighting methods, and different measures of the plants' capital stocks.
View Full
Paper PDF