In this study we construct twelve different measures of productivity at the plant level and test which measures of productivity are most closely associated with direct measures of economic performance. We first examine how closely correlated these measures are with various measures of profits. We then evaluate the extent to which each productivity measure is associated with lower rates of plant closure and faster plant growth (growth in employment, output, and capital). All measures of productivity considered are credible in the sense that highly productive plants, regardless of measure, are clearly more profitable, less likely to close, and grow faster. Nevertheless, labor productivity and measures of total factor productivity that are based on regression estimates of production functions are better predictors of plant growth and survival than factor share-based measures of total factor productivity (TFP). Measures of productivity that are based on several years of data appear to outperform measures of productivity that are based solely on data from the most recent year.
-
Productivity Races II: The Issue of Capital Measurement
January 1997
Working Paper Number:
CES-97-03
This paper explores the role of capital measurement in determining the productivity of individual textile plants. In addition to gross book value of capital, we experiment with a perpetual inventory measure of capital and implicit (estimated) deflator associated with the age of the plant. Following the methodology of the earlier paper (Productivity Races I), we find that measures of productivity constructed from different measures of capital are highly correlated. Further, their association with alternative measures of economic performance is approximately the same. Nevertheless, the perpetual inventory measure of capital -- the most desirable measure from a theoretical perspective -- does consistently outperform the other two measures.
View Full
Paper PDF
-
Whittling Away At Productivity Dispersion
March 1995
Working Paper Number:
CES-95-05
In any time period, in any industry, plant productivity levels differ widely and this dispersion is persistent. This paper explores the sources of this dispersion and their relative magnitudes in the textile industry. Plants that are measured as being more productive but pay higher wages are not necessarily more profitable; wage dispersion can account for approximately 15 percent of productivity dispersion. A plant that is highly productive today may not be as productive tomorrow. I develop a new method for measuring ex-ante dispersion and the percentage of dispersion "explained" by mean reversion. Mean reversion accounts for as much as one half the observed productivity dispersion. A portion of the dispersion, however, appears to reflect real quality differences between plants; plants that are measured as being more productive expand faster and are less likely to exit.
View Full
Paper PDF
-
ARE FIXED EFFECTS FIXED? Persistence in Plant Level Productivity
May 1996
Working Paper Number:
CES-96-03
Estimates of production functions suffer from an omitted variable problem; plant quality is an omitted variable that is likely to be correlated with variable inputs. One approach is to capture differences in plant qualities through plant specific intercepts, i.e., to estimate a fixed effects model. For this technique to work, it is necessary that differences in plant quality are more or less fixed; if the "fixed effects" erode over time, such a procedure becomes problematic, especially when working with long panels. In this paper, a standard fixed effects model, extended to allow for serial correlation in the error term, is applied to a 16-year panel of textile plants. This parametric approach strongly accepts the hypothesis of fixed effects. They account for about one-third of the variation in productivity. A simple non-parametric approach, however, concludes that differences in plant qualities erode over time, that is plant qualities f-mix. Monte Carlo results demonstrate that this discrepancy comes from the parametric approach imposing an overly restrictive functional form on the data; if there were fixed effects of the magnitude measured, one would reject the hypothesis of f-mixing. For textiles, at least, the functional form of a fixed effects model appears to generate misleading conclusions. A more flexible functional form is estimated. The "fixed" effects actually have a half life of approximately 10 to 20 years, and they account for about one-half the variation in productivity.
View Full
Paper PDF
-
Whittling Away At Productivity Dispersion Futher Notes: Persistent Dispersion or Measurement Error?
November 1996
Working Paper Number:
CES-96-11
This note considers several hypotheses regarding measurement error as a source of observed cross-sectional dispersion in plant-level productivity in the US textile industry. The hypotheses that reporting error and/or price rigidity in either materials and/or output account for a substantial portion of the observed dispersion in productivity are consistent with the data. Similarly, the hypothesis that transitory product niches or fashion effects lead to differential markups and consequently dispersion in observed productivity is consistent with the data. The hypothesis that transfer pricing problems lead to persistent differences in plant-level productivity, in contrast, does not appear to be consistent with the data. Finally, the hypothesis that some plants have permanent product niches that lead to dispersion in observed productivity does not appear to be consistent with data. In order to avoid imposing a strong functional form on the data, this note follows a non-parametric methodology developed in the early paper.
View Full
Paper PDF
-
Plant-Level Productivity and the Market Value of a Firm
June 2001
Working Paper Number:
CES-01-03
Some plants are more productive than others ' at least in terms of how productivity is conventionally measured. Do these differences represent an intangible asset? Does the stock market place a higher value on firms with highly productive plants? This paper tests this hypothesis with a new data set. We merge plant-level fundamental variables with firm-level financial variables. We find that firms with highly productive plants have higher market valuations as measured by Tobin's q ' productivity does indeed have a price.
View Full
Paper PDF
-
Decomposing Aggregate Productivity
July 2022
Working Paper Number:
CES-22-25
In this note, we evaluate the sensitivity of commonly-used decompositions for aggregate productivity. Our analysis spans the universe of U.S. manufacturers from 1977 to 2012 and we find that, even holding the data and form of the production function fixed, results on aggregate productivity are extremely sensitive to how productivity at the firm level is measured. Even qualitative statements about the levels of aggregate productivity and the sign of the covariance between productivity and size are highly dependent on how production function parameters are estimated. Despite these difficulties, we uncover some consistent facts about productivity growth: (1) labor productivity is consistently higher and less error-prone than measures of multi-factor productivity; (2) most productivity growth comes from growth within firms, rather than from reallocation across firms; (3) what growth does come from reallocation appears to be driven by net entry, primarily from the exit of relatively less-productive firms.
View Full
Paper PDF
-
Linking Investment Spikes and Productivity Growth: U.S. Food Manufacturing Industry
October 2008
Working Paper Number:
CES-08-36
We investigate the relationship between productivity growth and investment spikes using Census Bureau's plant-level data set for the U.S. food manufacturing industry. We find that productivity growth increases after investment spikes suggesting an efficiency gain or plants' learning effect. However, efficiency and the learning period associated with investment spikes differ among plants' productivity quartile ranks implying the differences in the plants' investment types such as expansionary, replacement or retooling. We find evidence of both convex and non-convex types of adjustment costs where lumpy plant-level investments suggest the possibility of non-convex adjustment costs and hazard estimation results suggest the possibility of convex adjustment costs. The downward sloping hazard can be due to the unobserved heterogeneity across plants such as plants' idiosyncratic obsolescence caused by different R&D capabilities and implies the existence of convex adjustment costs. Food plants frequently invest during their first few years of operation and high productivity plants postpone investing due to high fixed costs.
View Full
Paper PDF
-
Productivity Growth Patterns in U.S. Food Manufacturing: Case of Dairy Products Industry
May 2004
Working Paper Number:
CES-04-08
A panel constructed from the Census Bureau's Longitudinal Research Database is used to measure total factor productivity growth at the plant-level and analyzes the multifactor bias of technical change at three-digit product group level containing five different four-digit sub-group categories for the U.S. dairy products industry from 1972 through 1995. In the TFP growth decomposition, analyzing the growth and its components according to the quartile ranks show that scale effect is the most significant element of TFP growth except the plants in the third quartile rank where technical change dominates throughout the time periods. The exogenous input bias results show that throughout the time periods, technical change is 1) capital-using; 2) labor-using after 1980; 3) material-saving except 1981-1985 period; and, 4) energy-using except 1981-1985 and 1991-1995 periods. Plant productivity analysis indicate that less than 50% of the plants in the dairy products industry stay in the same category, indicating considerable movement between productivity rank categories. Investment analysis results indicate that plant-level investments are quite lumpy since a relatively small percent of observations account for a disproportionate share of overall investment. Productivity growth is found to be positively correlated with recent investment spikes for plants with TFP ranking in the middle two quartiles and uncorrelated with plants in the smallest and largest quartiles. Similarly, past TFP growth rates present no significant correlation with future investment spikes for plants in any quartile.
View Full
Paper PDF
-
Plant-Level Productivity and Imputation of Missing Data in the Census of Manufactures
January 2011
Working Paper Number:
CES-11-02
In the U.S. Census of Manufactures, the Census Bureau imputes missing values using a combination of mean imputation, ratio imputation, and conditional mean imputation. It is wellknown that imputations based on these methods can result in underestimation of variability and potential bias in multivariate inferences. We show that this appears to be the case for the existing imputations in the Census of Manufactures. We then present an alternative strategy for handling the missing data based on multiple imputation. Specifically, we impute missing values via sequences of classification and regression trees, which offer a computationally straightforward and flexible approach for semi-automatic, large-scale multiple imputation. We also present an approach to evaluating these imputations based on posterior predictive checks. We use the multiple imputations, and the imputations currently employed by the Census Bureau, to estimate production function parameters and productivity dispersions. The results suggest that the two approaches provide quite different answers about productivity.
View Full
Paper PDF
-
The Structure Of Production Technology Productivity And Aggregation Effects
August 1991
Working Paper Number:
CES-91-05
This is a sequel to an earlier paper by the author, Dhrymes (1990). Using the LRD sample, that paper examined the adequacy of the functional form specifications commonly employed in the literature of US Manufacturing production relations. The "universe" of the investigation was the three digit product group; the basic unit of observation was the plant; the sample consisted of all "large" plants, defined by the criterion that they employ 250 or more workers. The study encompassed three digit product groups in industries 35, 36 and 38, over the period 1972-1986, and reached one major conclusion: if one were to judge the adequacy of a given specification by the parametric compatibility of the estimates of the same parameters, as derived from the various implications of each specification, then the three most popular (production function) specifications, Cobb-Douglas, CES and Translog all fell very wide of the mark. The current paper focuses the investigation on two digit industries (but retains the plant as the basic unit of observation), i.e., our sample consists of all "large" manufacturing plants, in each of Industry 35, 36 and 38, over the period 1972-1986. It first replicates the approach of the earlier paper; the results are basically of the same genre, and for that reason are not reported herein. Second, it examines the extent to which increasing returns to scale characterize production at the two digit level; it is established that returns to scale at the mean, in the case of the translog production function are almost identical to those obtained with the Cobb-Douglas function.1 Finally, it examines the robustness and characteristics of measures of productivity, obtained in the context of an econometric formulation and those obtained by the method of what may be thought of as the "Solow Residual" and generally designated as Total Factor Productivity (TFP). The major finding here is that while there are some differences in productivity behavior as established by these two procedures, by far more important is the aggregation sensitivity of productivity measures. Thus, in the context of a pooled sample, introduction of time effects (generally thought to refer to productivity shifts) are of very marginal consequence. On the other hand, the introduction of four digit industry effects is of appreciable consequence, and this phenomenon is universal, i.e., it is present in industry 35, 36 as well as 38. The suggestion that aggregate productivity behavior may be largely, or partly, an aggregation phenomenon is certainly not a part of the established literature. Another persistent phenomenon uncovered is the extent to which productivity measures for individual plants are volatile, while two digit aggregate measures appear to be stable. These findings clearly calls for further investigation.
View Full
Paper PDF