CREAT: Census Research Exploration and Analysis Tool

Business-Level Expectations and Uncertainty

December 2020

Abstract

The Census Bureau's 2015 Management and Organizational Practices Survey (MOPS) utilized innovative methodology to collect five-point forecast distributions over own future shipments, employment, and capital and materials expenditures for 35,000 U.S. manufacturing plants. First and second moments of these plant-level forecast distributions covary strongly with first and second moments, respectively, of historical outcomes. The first moment of the distribution provides a measure of business' expectations for future outcomes, while the second moment provides a measure of business' subjective uncertainty over those outcomes. This subjective uncertainty measure correlates positively with financial risk measures. Drawing on the Annual Survey of Manufactures and the Census of Manufactures for the corresponding realizations, we find that subjective expectations are highly predictive of actual outcomes and, in fact, more predictive than statistical models fit to historical data. When respondents express greater subjective uncertainty about future outcomes at their plants, their forecasts are less accurate. However, managers supply overly precise forecast distributions in that implied confidence intervals for sales growth rates are much narrower than the distribution of actual outcomes. Finally, we develop evidence that greater use of predictive computing and structured management practices at the plant and a more decentralized decision-making process (across plants in the same firm) are associated with better forecast accuracy.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
production, econometric, manufacturing, sale, managerial, forecast, management


Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Business-Level Expectations and Uncertainty' are listed below in order of similarity.