CREAT: Census Research Exploration and Analysis Tool

Does Federally-Funded Job Training Work? Nonexperimental Estimates of WIA Training Impacts Using Longitudinal Data on Workers and Firms

January 2018

Working Paper Number:

CES-18-02

Abstract

We study the job training provided under the US Workforce Investment Act (WIA) to adults and dislocated workers in two states. Our substantive contributions center on impacts estimated non-experimentally using administrative data. These impacts compare WIA participants who do and do not receive training. In addition to the usual impacts on earnings and employment, we link our state data to the Longitudinal Employer-Household Dynamics (LEHD) data at the US Census Bureau, which allows us to estimate impacts on the characteristics of the firms at which participants find employment. We find moderate positive impacts on employment, earnings and desirable firm characteristics for adults, but not for dislocated workers. Our primary methodological contribution consists of assessing the value of the additional conditioning information provided by the LEHD relative to the data available in state Unemployment Insurance (UI) earnings records. We find that value to be zero.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
econometric, earnings, employee, employment effects, employ, employed, employment estimates, employment data, impact, tenure, workforce, salary, effects employment, occupation, workers earnings, enrollment, associate, employment statistics, longitudinal employer, state employment, employment unemployment, unemployment insurance, employee data, employment earnings, enrollee, compensation, eligible, impact employment, earnings employees, enrolled

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, Office of Management and Budget, Current Population Survey, Department of Economics, Decennial Census, Unemployment Insurance, Department of Labor, Longitudinal Employer Household Dynamics, University of Michigan

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Does Federally-Funded Job Training Work? Nonexperimental Estimates of WIA Training Impacts Using Longitudinal Data on Workers and Firms' are listed below in order of similarity.