CREAT: Census Research Exploration and Analysis Tool

Playing with Matches: An Assessment of Accuracy in Linked Historical Data

June 2016

Written by: Catherine G. Massey

Working Paper Number:

carra-2016-05

Abstract

This paper evaluates linkage quality achieved by various record linkage techniques used in historical demography. I create benchmark, or truth, data by linking the 2005 Current Population Survey Annual Social and Economic Supplement to the Social Security Administration's Numeric Identification System by Social Security Number. By comparing simulated linkages to the benchmark data, I examine the value added (in terms of number and quality of links) from incorporating text-string comparators, adjusting age, and using a probabilistic matching algorithm. I find that text-string comparators and probabilistic approaches are useful for increasing the linkage rate, but use of text-string comparators may decrease accuracy in some cases. Overall, probabilistic matching offers the best balance between linkage rates and accuracy.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimating, data, census data, microdata, survey, respondent, longitudinal, record, matched, matching, census years, demography, ancestry, records census, census use, datasets, census linked, linkage

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Social Security Administration, Current Population Survey, Social Security Number, Protected Identification Key, Minnesota Population Center, SSA Numident, Personally Identifiable Information

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Playing with Matches: An Assessment of Accuracy in Linked Historical Data' are listed below in order of similarity.