CREAT: Census Research Exploration and Analysis Tool

Concentration, Diversity, and Manufacturing Performance

July 2010

Written by: Joshua Drucker

Working Paper Number:

CES-10-14

Abstract

Regional economist Benjamin Chinitz was one of the most successful proponents of the idea that regional industrial structure is an important determinant of economic performance. His influential article in the American Economic Review in 1961 prompted substantial research measuring industrial structure at the regional scale and examining its relationships to economic outcomes. A considerable portion of this work operationalized the concept of regional industrial structure as sectoral diversity, the degree to which the composition of an economy is spread across heterogeneous activities. Diversity is a relatively simple construct to measure and interpret, but does not capture the implications of Chinitz's ideas fully. The structure within regional industries may also influence the performance of business enterprises. In particular, regional intra-industry concentration'the extent to which an industry is dominated by a few relatively large firms in a locality'has not appeared in empirical work studying economic performance apart from individual case studies, principally because accurately measuring concentration within a regional industry requires firm-level information. Multiple establishments of varying sizes in a given locality may be part of the same firm. Therefore, secondary data sources on establishment size distributions (such as County Business Patterns or aggregated information from the Census of Manufactures) can yield only deceptive portrayals of the level of regional industrial concentration. This paper uses the Longitudinal Research Database, a confidential establishment-level dataset compiled by the United States Census Bureau, to compare the influences of industrial diversity and intra-industry concentration upon regional and firm-level economic outcomes. Manufacturing establishments are aggregated into firms and several indicators of regional industrial concentration are calculated at multiple levels of industrial aggregation. These concentration indicators, along with a regional sectoral diversity measure, are related to employment change over time and incorporated into plant productivity estimations, in order to examine and distinguish the relationships between the differing aspects of regional industrial structure and economic performance. A better understanding of the particular links between regional industrial structure and economic performance can be used to improve economic development planning efforts. With continuing economic restructuring and associated workforce dislocation in the United States and worldwide, industrial concentration and over-specialization are separate mechanisms by which regions may 'lock in' to particular competencies and limit the capacity to adjust quickly and efficiently to changing markets and technologies. The most appropriate and effective policies for improving economic adaptability should reflect the structural characteristics that limit flexibility. This paper gauges the consequences of distinct facets of regional industrial structure, adding new depth to the study of regional industries by economic development planners and researchers.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
enterprise, industrial, sector, midwest, regional, establishment, specialization, metropolitan, sectoral, regional economic, region, industrialized, locality, regional industry, regional industries

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Census of Manufactures, Annual Survey of Manufactures, Standard Industrial Classification, Longitudinal Research Database, National Science Foundation, County Business Patterns, American Economic Review, Chicago Census Research Data Center, Consolidated Metropolitan Statistical Areas, North American Industry Classification System, United States Census Bureau, 2010 Census, Herfindahl-Hirschman, Ewing Marion Kauffman Foundation

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Concentration, Diversity, and Manufacturing Performance' are listed below in order of similarity.