CREAT: Census Research Exploration and Analysis Tool

IT Spending and Firm Productivity: Additional Evidence from the Manufacturing Sector

October 1999

Written by: Kevin M Stolarick

Working Paper Number:

CES-99-10

Abstract

The information systems (IS) "productivity paradox" is based on those studies that found little or no positive relationship between firm productivity and spending on IS. However, some earlier studies and one more recent study have found a positive relationship. Given the large amounts spent by organizations on information systems, it is important to understand the relationship between spending on IS and productivity. Beyond replicating positive results, an explanation is needed for the conflicting conclusions reached by these earlier studies. Data collected by the Bureau of the Census is analyzed to investigate the relationship between plant-level productivity and spending on IS. The relationship between productivity and spending on IS is investigated using assumptions and models similar to both studies with positive findings and studies with negative findings. First, the overall relationship is investigated across all manufacturing industries. Next, the relationship is investigated industry by industry. The analysis finds a positive relationship between plant-level productivity and spending on IS. The relationship is also shown to vary across industries. The conflicting results from earlier studies are explained by understanding the characteristics of the data analyzed in each study. A large enough sample size is needed to find the relatively smaller effect from IS spending as compared to other input spending included in the models. Because the relationship between productivity and IS spending varies across industries, industry mix is shown to be an important data characteristic that may have influenced prior results.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
investment, analysis, production, productive, estimating, manufacturing, sale, company, productivity growth, technology, growth, technological, organizational, industry productivity, productivity differences, productivity measures, measures productivity, expenditure, analysis productivity, profit, spending, expense

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Census of Manufactures, Annual Survey of Manufactures, Longitudinal Research Database, Center for Economic Studies, Total Factor Productivity, Financial, Insurance and Real Estate Industries

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'IT Spending and Firm Productivity: Additional Evidence from the Manufacturing Sector' are listed below in order of similarity.