CREAT: Census Research Exploration and Analysis Tool

Learning by Doing and Plant Characteristics

August 1996

Written by: Ron Jarmin

Working Paper Number:

CES-96-05

Abstract

Learning by doing, especially spillover learning, has received much attention lately in models of industry evolution and economic growth. The predictions of these models depend on the distribution of learning abilities and knowledge flows across firms and countries. However, the empirical literature provides little guidance on these issues. In this paper, I use plant level data on a sample of entrants in SIC 38, Instruments, to examine the characteristics associated with both proprietary and spillover learning by doing. The plant level data permit tests for the relative importance of within and between firm spillovers. I include both formal knowledge, obtained through R&D expenditures, and informal knowledge, obtained through learning by doing, in a production function framework. I allow the speed of learning to vary across plants according to characteristics such as R&D intensity, wages, and the skill mix. The results suggest that (a) Ainformal@ knowledge, accumulated through production experience at the plant, is a much more important source of productivity growth for these plants than is Aformal@ knowledge gained via research and development expenditures, (b) interfirm spillovers are stronger than intrafirm spillovers, (c) the slope of the own learning curve is positively related to worker quality, (d) the slope of the spillover learning curve is positively related to the skill mix at plants, (e) neither own nor spillover learning curve slopes are related to R&D intensities. These results imply that learning by doing may be, to some extent, an endogenous phenomenon at these plants. Thus, models of industry evolution that incorporate learning by doing may need to be revised. The results are also broadly consistent with the recent growth models.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
production, economist, econometric, estimating, industrial, productivity growth, growth, earnings, technological, employ, produce, firms grow, expenditure, inventory, economically, spillover, industry concentration

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Census of Manufactures, Standard Industrial Classification, Longitudinal Research Database, National Science Foundation, Ordinary Least Squares, Bureau of Economic Analysis, Census Bureau Longitudinal Business Database, Survey of Industrial Research and Development

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Learning by Doing and Plant Characteristics' are listed below in order of similarity.