The influence of academic science on industrial R&D seems to have increased in recent years compared with the pre-World War II period. This paper outlines an approach to tracing this influence using a panel of 14 R&D performing industries from 1961-1986. The results indicate an elasticity between real R&D and indicators of stocks of academic science of about 0.6. This elasticity is significant controlling for industry effects. However, the elasticity declines from its level during the 1961-1973 subperiod, when it was 2.2, to 0.5 during the 1974-1986 subperiod. Reasons for the decline include exogenous and endogenous exhaustion of invention potential, and declining incentives to do R&D stemming from a weakening of intellectual property rights. The growth of R&D since the mid-1980s suggests a restoration of R&D incentives in still more recent times.
-
Academic Science, Industrial R&D, and the Growth of Inputs
January 1993
Working Paper Number:
CES-93-01
This paper is a theoretical and empirical investigation of the connection between science, R&D, and the growth of capital. Studies of high technology industries and recent labor studies agree in assigning a large role to science and technology in the growth of human and physical capital, although direct tests of these relationships have not been carried out. This paper builds on the search approach to R&D of Evenson and Kislev (1976) to unravel the complex interactions between science, R&D, and factor markets suggested by these studies. In our theory lagged science increases the returns to R&D, so that scientific advance later feeds into growth of R&D. In turn, product quality improvements and price declines lead to the growth of industry by shifting out new product demand, perhaps at the expense of traditional industries. All this tends to be in favor of the human and physical capital used intensively by high technology industries. This is the source of the factor bias which is implicit in the growth of capital per head. Our empirical work overwhelmingly supports the contention that growth of labor skills and physical capital are linked to science and R&D. It also supports the strong sequencing of events that is a crucial feature of our model, first from science to R&D, and later to output and factor markets.
View Full
Paper PDF
-
The Span of the Effect of R&D in the Firm and Industry
May 1994
Working Paper Number:
CES-94-07
Previous studies have found that the firm's own research and spillovers of research by related firms increase firm productivity. In contrast, in this paper we explore the impact of firm R&D on the productivity of its individual plants. We carry out this investigation of within firm R&D effects using a unique set of Census data. The data, which are from the chemicals industry, are a match of plant level productivity and other characteristics with firm level data on R&D of the parent company, cross-classified by location and applied product field. We explore three aspects of the span of effect of the firm's R&D: (i), the degree to which its R&D is "public" across plants; (ii), the extent of its localization in geographic space, and (iii), the breadth of its relevance outside the applied product area in which it is classified. We find that (i), firm R&D acts more like a private input which is strongly amortized by the number of plants in the firm; (ii), firm R&D is geographically localized, and exerts greater influence on productivity when it is conducted nearer to the plant; and (iii), firm R&D in a given applied product area is of limited relevance to plants producing outside that product area. Moreover, we find that while geographic localization remains significant, it diminishes over time. This trend is consistent with the effect of improved telecommunications on increased information flows within organizations. Finally, we consider spillovers of R&D from the rest of industry, finding that the marginal product of industry R&D on plant productivity, though positive and significant, is far smaller than the marginal product of parent firm's R&D.
View Full
Paper PDF
-
The Structure of Firm R&D and the Factor Intensity of Production
October 1997
Working Paper Number:
CES-97-15
This paper studies the influence of the structure of firm R&D, industry R&D spillovers, and plant level physical capital on the factor intensity of production. By the structure of firm R&D we mean its distribution across states and products. By factor intensity we mean the cost shares of variable factors, which in this paper are blue collar labor, white collar labor, and materials. We characterize the effect of the structure of firm R&D on factor intensity using a Translog cost function with quasi-fixed factors. This cost function gives rise to a system of variable cost shares that depends on factor prices, firm and industry R&D, and physical capital.
View Full
Paper PDF
-
Recent Twists of the Wage Structure and Technology Diffusion
March 1994
Working Paper Number:
CES-94-05
This paper is an empirical study of the impact on U.S. wage structure of domestic technology, foreign technology, and import penetration. A model is presented which combines factor proportions theory with a version of growth theory. The model, which assumes two levels of skill, suggests that domestic technology raises both wages, while foreign technology, on a simple interpretation, lowers both. Trade at a constant technology, as usual, lowers the wage of that class of labor used intensively by the affected industry, and raises the other wage. The findings support the predictions of the model for domestic technology. On the other hand, they suggest that technological change, and perhaps other factors, have obscured the role of factor proportions in the data. Indeed, foreign technology and trade have the same effect on wages at different skill levels, not the opposite effects suggested by factor proportions. Finally, a simple diffusion story, in which foreign technology lowers all U.S. wages, is also rejected. Instead, uniformly higher U.S. wages, not lower, appear to be associated with the technology and trade of the oldest trading partners of the U.S., the economies of the West. Not so for Asia, especially the smaller countries which have recently accelerated their trade with the U.S. Their effects are uniformly negative on wages, suggesting a distinction between shock and long run effects of foreign technology and trade.
View Full
Paper PDF
-
R&D Reactions To High-Technology Import Competition
March 1991
Working Paper Number:
CES-91-02
For a seventeen-year panel covering 308 U.S. manufacturing corporations, we analyze firms' R&D spending reactions to changes in high-technology imports. On average, companies reduced their R&D/sales ratios in the short run as imports rose. Individual company reactions were heterogeneous, especially for multinational firms. Short-run reactions were more aggressive (i.e., tending toward R&D/sales ratio increases), the more concentrated the markets were in which the companies operated, the larger the company was, and the more diversified the firm's sales mix was. Reactions were less aggressive when special trade barriers had been erected or patent protection was strong in the impacted industries. Companies with a top executive officer educated in science or engineering were more likely to increase R&D/sales ratios in response to an import shock, all else equal. Over the full 17-year sample period, reactions may have shifted toward greater average aggressiveness.
View Full
Paper PDF
-
A Guide To R&D Data At The Center For Economic Studies U.S. Bureau Of THe Census
August 1994
Working Paper Number:
CES-94-09
The National Science Foundation R&D Survey is an annual survey of firms' research and development expenditures. The survey covers 3000 firms reporting positive R&D. This paper provides a description of the R&D data available at the Center for Economic Studies (CES). The most basic data series available contains the original survey R&D data. It covers the years 1972-92. The remaining two series, although derived from the original files, specialize in particular items. The Mandatory Series contains required survey items for the years 1973-88. Items reported at firms' discretion are in the Voluntary Series, which covers the years 1974-89. Both of the derived series incorporate flags that track quality of the data. Both also include corrections to the data based on original hard copy survey evidence stored at CES. In addition to describing each dataset, we offer suggestions to researchers wishing to use the R&D data in exploring various economic issues. We report selected response rates, discuss the survey design, and provide hints on how to use the data.
View Full
Paper PDF
-
Outsourced R&D and GDP Growth
March 2016
Working Paper Number:
CES-16-19
Endogenous growth theory holds that growth should increase with R&D. However coarse comparison between R&D and US GDP growth over the past forty years indicates that inflation scientific labor increased 2.5 times, while GDP growth was at best stagnant. The leading explanation for the disconnect between theory and the empirical record is that R&D has gotten harder. I develop and test an alternative view that firms have become worse at it. I find no evidence R&D has gotten harder. Instead I find firms' R&D productivity declined 65%, and that the main culprit in the decline is outsourced R&D, which is unproductive for the funding firm. This offers hope firms' R&D productivity and economic growth may be fairly easily restored by bringing outsourced R&D back in-house.
View Full
Paper PDF
-
Learning by Doing and Plant Characteristics
August 1996
Working Paper Number:
CES-96-05
Learning by doing, especially spillover learning, has received much attention lately in models of industry evolution and economic growth. The predictions of these models depend on the distribution of learning abilities and knowledge flows across firms and countries. However, the empirical literature provides little guidance on these issues. In this paper, I use plant level data on a sample of entrants in SIC 38, Instruments, to examine the characteristics associated with both proprietary and spillover learning by doing. The plant level data permit tests for the relative importance of within and between firm spillovers. I include both formal knowledge, obtained through R&D expenditures, and informal knowledge, obtained through learning by doing, in a production function framework. I allow the speed of learning to vary across plants according to characteristics such as R&D intensity, wages, and the skill mix. The results suggest that (a) Ainformal@ knowledge, accumulated through production experience at the plant, is a much more important source of productivity growth for these plants than is Aformal@ knowledge gained via research and development expenditures, (b) interfirm spillovers are stronger than intrafirm spillovers, (c) the slope of the own learning curve is positively related to worker quality, (d) the slope of the spillover learning curve is positively related to the skill mix at plants, (e) neither own nor spillover learning curve slopes are related to R&D intensities. These results imply that learning by doing may be, to some extent, an endogenous phenomenon at these plants. Thus, models of industry evolution that incorporate learning by doing may need to be revised. The results are also broadly consistent with the recent growth models.
View Full
Paper PDF
-
Industrial Spillovers In Developing Countries: Plant-Level Evidence From Chile, Mexico And Morocco
January 1998
Working Paper Number:
CES-98-02
Recent trade and growth models have underscored the potential importance of external economies of scale. However, many of the most frequently modeled externalities have either not been measured or have been estimated with data too aggregate to be informative. In this paper, plant-level longitudinal data from Chile, Mexico and Morocco allow me to provide some of the first micro evidence on several types of external economies from plant-level production functions. The results indicate that in many industries own-industry output contributes positively to plant-level productivity. However, the effects of geographic concentration are mixed. Cross-country concentration, as measured by a geographic GINI index, often decreases productivity but within-province, same industry activity enhances it.
View Full
Paper PDF
-
Allocation of Company Research and Development Expenditures to Industries Using a Tobit Model
November 2015
Working Paper Number:
CES-15-42
This paper uses Census microdata and a regression-based approach to assign multi-division firms' pre-2008 Research and Development (R&D) expenditures to more than one industry. Since multi-division firms conduct R&D in more than one industry, assigning R&D to corresponding industries provides a more accurate representation of where R&D actually takes place and provides a consistent time-series with the National Science Foundation R&D by line of business information. Firm R&D is allocated to industries on the basis of observed industry payroll, as befits the historic importance of payroll in Census assignments of firms to industry. The results demonstrate that the method of assigning R&D to industries on the basis of payroll works well in earlier years, but becomes less effective over time as firms outsource their manufacturing function.
View Full
Paper PDF