CREAT: Census Research Exploration and Analysis Tool

Gifted Identification Across the Distribution of Family Income

December 2025

Abstract

Currently, 6.1 percent of K-12 students in the United States receive gifted education. Using education and IRS data that provide information on students and their family income, we show pronounced differences in who schools identify as gifted across the distribution of family income. Under 4 percent of students in the lowest income percentile are identified as gifted, compared with 20 percent of those in the top income percentile. Income-based differences persist after accounting for student test scores and exist across students of different sexes and racial/ethnic groups, underscoring the importance of family resources for gifted identification in schools.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
statistical, report, survey, study, ethnicity, ethnic, hispanic, state, percentile, population, enrollment, socioeconomic, census bureau, irs, use census, family income, enrollee, eligibility, prevalence, income data, enrolled, income white

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Internal Revenue Service, Center for Economic Studies, Department of Education, Census Bureau Disclosure Review Board, Disclosure Review Board, Stanford University

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Gifted Identification Across the Distribution of Family Income' are listed below in order of similarity.