This paper presents a view of firm performance, industry evolution, and economic growth that contrasts with the traditional representative firm model. The paper reviews recent empirical work, primarily studies using the Longitudinal Research Database (LRD), that explicitly focuses on individual business units. The major empirical regularity in the studies is that heterogeneity is pervasive -- it is found across and within all sectors and across all plant characteristics. Further, firms are not only different in the cross-section. They enter at different times, make different choices, and react differently to economic shocks. Thus, to understand economic performance and competition, one must move beyond representative firm models. Competition must be understood as a process in which some firms choose correctly and grow while other firms choose poorly and die; the growth of the successful firms at the expense of less successful rivals drives economic growth.
-
Longitudinal Economic Data At The Census Bureau: A New Database Yields Fresh Insight On Some Old Issues
January 1990
Working Paper Number:
CES-90-01
This paper has two goals. First, it illustrates the importance of panel data with examples taken from research in progress using the U.S. Census Bureau's Longitudinal Research Database ( LRD ). Although the LRD is not the result of a "true" longitudinal survey, it provides both balanced and unbalanced panel data sets for establishments, firms, and lines of business. The second goal is to integrate the results of recent research with the LRD and to draw conclusions about the importance of longitudinal microdata for econometric research and time series analysis. The advantages of panel data arise from both the micro and time series aspects of the observations. This also leads us to consider why panel data are necessary to understand and interpret the time series behavior of aggregate statistics produced in cross-section establishment surveys and censuses. We find that typical homogeneity assumptions are likely to be inappropriate in a wide variety of applications. In particular, the industry in which an establishment is located, the ownership of the establishment, and the existence of the establishment (births and deaths) are endogenous variables that cannot simply be taken as time invariant fixed effects in econometric modeling.
View Full
Paper PDF
-
The Impact of Vintage and Survival on Productivity: Evidence from Cohorts of U.S. Manufacturing Plants
May 2000
Working Paper Number:
CES-00-06
This paper examines the evolution of productivity in U.S. manufacturing plants from 1963 to 1992. We define a 'vintage effect' as the change in productivity of recent cohorts of new plants relative to earlier cohorts of new plants, and a 'survival effect' as the change in productivity of a particular cohort of surviving plants as it ages. The data show that both factors contribute to industry productivity growth, but play offsetting roles in determining a cohort's relative position in the productivity distribution. Recent cohorts enter with significantly higher productivity than earlier entrants did, while surviving cohorts show significant increases in productivity as they age. These two effects roughly offset each other, however, so there is a rough convergence in productivity across cohorts in 1992 and 1987. (JEL Code: D24, L6)
View Full
Paper PDF
-
Industry Learning Environments and the Heterogeneity of Firm Performance
December 2006
Working Paper Number:
CES-06-29
This paper characterizes inter-industry heterogeneity in rates of learning-by-doing and examines how industry learning rates are connected with firm performance. Using data from the Census Bureau and Compustat, we measure the industry learning rate as the coefficient on cumulative output in a production function. We find that learning rates vary considerably among industries and are higher in industries with greater R&D, advertising, and capital intensity. More importantly, we find that higher rates of learning are associated with wider dispersion of Tobin's q and profitability among firms in the industry. Together, these findings suggest that learning intensity represents an important characteristic of the industry environment.
View Full
Paper PDF
-
USING LINKED CENSUS R&D-LRD DATA TO ANALYZE THE EFFECT OF R&D INVESTMENT ON TOTAL FACTOR PRODUCTIVITY GROWTH
January 1989
Working Paper Number:
CES-89-02
Previous studies have demonstrated that productivity growth is positively correlated with the intensity of R&D investment. However, existing studies of this relationship at the micro (firm or line of business) level have been subject to some important limitations. The most serious of these has been an inability to adequately control for the diversified activities of corporations. This study makes use of linked Census R&D - LRD data, which provides comprehensive information on each firms' operations at the 4-digit SIC level. A marked improvement in explaining the association between R&D and TFP occurs when we make appropriate use of the data by firm by industry. Significant relationships between the intensities of investment in total, basic, and company-funded R&D, and TFP growth are confirmed.
View Full
Paper PDF
-
An Option-Value Approach to Technology in U.S. Maufacturing: Evidence from Plant-Level Data
July 2000
Working Paper Number:
CES-00-12
Numerous empirical studies have examined the role of firm and industry heterogeneity in the decision to adopt new technologies using a Net Present Value framework. However, as suggested by the recently developed option-value theory, these studies may have overlooked the role of investment reversibility and uncertainty as important determinants of technology adoption. Using the option-value investment model as my underlying theoretical framework, I examine how these two factors affect the decision to adopt three advanced manufacturing technologies. My results support the option-value model's prediction that plants operating in industries facing higher investment reversibility and lower degrees of demand and technological uncertainty are more likely to adopt advanced manufacturing technologies.
View Full
Paper PDF
-
Linking Investment Spikes and Productivity Growth: U.S. Food Manufacturing Industry
October 2008
Working Paper Number:
CES-08-36
We investigate the relationship between productivity growth and investment spikes using Census Bureau's plant-level data set for the U.S. food manufacturing industry. We find that productivity growth increases after investment spikes suggesting an efficiency gain or plants' learning effect. However, efficiency and the learning period associated with investment spikes differ among plants' productivity quartile ranks implying the differences in the plants' investment types such as expansionary, replacement or retooling. We find evidence of both convex and non-convex types of adjustment costs where lumpy plant-level investments suggest the possibility of non-convex adjustment costs and hazard estimation results suggest the possibility of convex adjustment costs. The downward sloping hazard can be due to the unobserved heterogeneity across plants such as plants' idiosyncratic obsolescence caused by different R&D capabilities and implies the existence of convex adjustment costs. Food plants frequently invest during their first few years of operation and high productivity plants postpone investing due to high fixed costs.
View Full
Paper PDF
-
The Missing Link: Technology, Productivity, and Investment
October 1995
Working Paper Number:
CES-95-12
This paper examines the relationship between productivity, investment, and age for over 14,000 plants in the U.S. manufacturing sector in the 1972-1988 period. Productivity patterns vary significantly due to plant heterogeneity. Productivity first increases and then decreases with respect to plant age, and size and industry are systematically correlated with productivity and productivity growth. However, there is virtually no observable relationship between investment and productivity or productivity growth. Overall, the results indicate that plant heterogeneity and fixed effects are more important determinants of observable productivity patterns than sunk costs or capital reallocation. Key Words: productivity, investment, technical change
View Full
Paper PDF
-
The Effect Of Technology Use On Productivity Growth
April 1996
Working Paper Number:
CES-96-02
This paper examines the relationship between the use of advanced technologies and productivity and productivity growth rates. We use data from the 1993 and 1988 Survey of Manufacturing Technology (SMT) to examine the use of advanced (computer based) technologies at two different points in time. We are also able to combine the survey data with the Longitudinal Research Database (LRD) to examine the relationships between plant performance, plant characteristics, and the use of advanced technologies. In addition, a subset of these plants were surveyed in both years, enabling us to directly associate changes in technology use with changes in plant productivity performance. The main findings of the study are as follows. First, diffusion is not the same across the surveyed technologies. Second, the adoption process is not smooth: plants added and dropped technologies over the six-year interval 1988-93. In fact, the average plant showed a gross change of roughly four technologies in achieving an average net increase of less than one new technology. In this regard, technology appears to be an experience good: plants experiment with particular technologies before deciding to add additional units or drop the technology entirely. We find that establishments that use advanced technologies exhibit higher productivity. This relationship is observed in both 1988 and 1993 even after accounting for other important factors associated with productivity: size, age, capital intensity, labor skill mix, and other controls for plant characteristics such as industry and region. In addition, the relationship between productivity and advanced technology use is observed both in the extent of technologies used and the intensity of their use. Finally, while there is some evidence that the use of advanced technologies is positively related to improved productivity performance, the data suggest that the dominant explanation for the observed cross-section relationship is that good performers are more likely to use advanced technologies than poorly performing operations.
View Full
Paper PDF
-
The Importance of Establishment Data in Economic Research
August 1993
Working Paper Number:
CES-93-10
The importance and usefulness of establishment microdata for economic research and policy analysis is outlined and contrasted with traditional products of statistical agencies -- aggregate cross-section tabulations. It is argued that statistical agencies must begin to seriously rethink the way they view establishment data products.
View Full
Paper PDF
-
Job Reallocation And The Business Cycle: New Facts An Old Debate
September 1998
Working Paper Number:
CES-98-11
This paper provides new facts on the nature of job reallocation over the business cycle, and addresses the question of whether reallocation causes recessions or recessions cause reallocation. Although we do not resolve the question of causality, two general findings emerge that advance our understanding of job reallocation and business cycles. First, much of the cyclical fluctuation in gross job flows occurs in larger plants with relatively moderate employment growth that tends to be transitory, especially at medium-term horizons (up to five years). Unusually large employment growth rates, especially plant startups and shutdowns, are primarily small-plant phenomena and tend to be permanent, less cyclical, and occur later in recessions. Further, high job flow rates occur primarily in plants previously experiencing sharp employment contractions or expansions. Second, key variables that should determine the allocation factors of production across plants and sectors do in fact appear to be related to gross job flows, particularly job destruction. Relative prices, productivity, and investment exhibit time series correlations with job reallocation that suggest that allocative driving forces may contribute significantly to business cycle fluctuations.
View Full
Paper PDF