CREAT: Census Research Exploration and Analysis Tool

The Choice of Input-Out Table Embedded in Regional Econometric Input-Out Models

January 1994

Working Paper Number:

CES-94-01

Abstract

In this paper we investigate the role of input-output data source in the regional econometric input-output models. While there has been a great deal of experimentation focused on the accuracy of alternative methods for estimating regional input-output coefficients, little attention has been directed to the role of accuracy when the input-output system is nested within a broader accounting framework. The issues of accuracy were considered in two contexts, forecasting and impact analysis focusing on a model developed for the Chicago Region. We experimented with three input-output data sources: observed regional data, national input-output, and randomly generated input-output coefficients. The effects of different sources of input-output data on regional econometric input-output model revealed that there are significant differences in results obtained in impact analyses. However, the adjustment processes inherent in the econometric input-output system seem to mute the initial differences in input- output data when the model is used for forecasting. Since applications of these types of models involve both impact and forecasting exercises, there would still seem to be a strong motivation for basing the system on the most accurate set of input-output accounts.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimation, econometric, estimating, state, regional, regression, autoregressive, forecast, expenditure, impact, regional economic, region, regressing

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Center for Economic Studies, Federal Reserve Bank of Chicago

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'The Choice of Input-Out Table Embedded in Regional Econometric Input-Out Models' are listed below in order of similarity.