CREAT: Census Research Exploration and Analysis Tool

Scientific Talent Leaks Out of Funding Gaps

February 2024

Working Paper Number:

CES-24-08

Abstract

We study how delays in NIH grant funding affect the career outcomes of research personnel. Using comprehensive earnings and tax records linked to university transaction data along with a difference-in-differences design, we find that a funding interruption of more than 30 days has a substantial effect on job placements for personnel who work in labs with a single NIH R01 research grant, including a 3 percentage point (40%) increase in the probability of not working in the US. Incorporating information from the full 2020 Decennial Census and data on publications, we find that about half of those induced into nonemployment appear to permanently leave the US and are 90% less likely to publish in a given year, with even larger impacts for trainees (postdocs and graduate students). Among personnel who continue to work in the US, we find that interrupted personnel earn 20% less than their continuously-funded peers, with the largest declines concentrated among trainees and other non-faculty personnel (such as staff and undergraduates). Overall, funding delays account for about 5% of US nonemployment in our data, indicating that they have a meaningful effect on the scientific labor force at the national level.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
payroll, researcher, study, employ, labor, job, impact, retirement, workforce, hiring, salary, funding, graduate, unemployed, career

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Social Security Administration, Ordinary Least Squares, Employer Identification Number, Longitudinal Business Database, Decennial Census, American Community Survey, Longitudinal Employer Household Dynamics, Employer-Household Dynamics, Individual Characteristics File, W-2, National Institutes of Health, Census Bureau Disclosure Review Board, Integrated Longitudinal Business Database, Disclosure Review Board, COVID-19

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Scientific Talent Leaks Out of Funding Gaps' are listed below in order of similarity.