We re-examine recent trends in regional income convergence, considering the full distribution of income rather than focusing on the mean. Measuring similarity by comparing each percentile of state
distributions to the corresponding percentile of the national distribution, we find that state incomes have become less similar (i.e. they have diverged) within the top 20 percent of the income distribution since 1969. The top percentile alone accounts for more than half of aggregate divergence across states over this period by our measure, and the top five percentiles combine to account for 93 percent. Divergence in top incomes across states appears to be driven largely by changes in top incomes among White people, while top incomes among Black people have experienced relatively little divergence.
-
The Distributional Effects of Minimum Wages: Evidence from Linked Survey and Administrative Data
March 2018
Working Paper Number:
carra-2018-02
States and localities are increasingly experimenting with higher minimum wages in response to rising income inequality and stagnant economic mobility, but commonly used public datasets offer limited opportunities to evaluate the extent to which such changes affect earnings growth. We use administrative earnings data from the Social Security Administration linked to the Current Population Survey to overcome important limitations of public data and estimate effects of the minimum wage on growth incidence curves and income mobility profiles, providing insight into how cross-sectional effects of the minimum wage on earnings persist over time. Under both approaches, we find that raising the minimum wage increases earnings growth at the bottom of the distribution, and those effects persist and indeed grow in magnitude over several years. This finding is robust to a variety of specifications, including alternatives commonly used in the literature on employment effects of the minimum wage. Instrumental variables and subsample analyses indicate that geographic mobility likely contributes to the effects we identify. Extrapolating from our estimates suggests that a minimum wage increase comparable in magnitude to the increase experienced in Seattle between 2013 and 2016 would have blunted some, but not nearly all, of the worst income losses suffered at the bottom of the income distribution during the Great Recession.
View Full
Paper PDF
-
Granular Income Inequality and Mobility using IDDA: Exploring Patterns across Race and Ethnicity
November 2023
Working Paper Number:
CES-23-55
Shifting earnings inequality among U.S. workers over the last five decades has been widely stud ied, but understanding how these shifts evolve across smaller groups has been difficult. Publicly available data sources typically only ensure representative data at high levels of aggregation, so they obscure many details of earnings distributions for smaller populations. We define and construct a set of granular statistics describing income distributions, income mobility and con ditional income growth for a large number of subnational groups in the U.S. for a two-decade period (1998-2019). In this paper, we use the resulting data to explore the evolution of income inequality and mobility for detailed groups defined by race and ethnicity. We find that patterns identified from the universe of tax filers and W-2 recipients that we observe differ in important ways from those that one might identify in public sources. The full set of statistics that we construct is available publicly as the Income Distributions and Dynamics in America, or IDDA, data set.
View Full
Paper PDF
-
Racial Disparity in an Era of Increasing Income Inequality
January 2017
Working Paper Number:
carra-2017-01
Using unique linked data, we examine income inequality and mobility across racial and ethnic groups in the United States. Our data encompass the universe of tax filers in the U.S. for the period 2000 to 2014, matched with individual-level race and ethnicity information from multiple censuses and American Community Survey data. We document both income inequality and mobility trends over the period. We find significant stratification in terms of average incomes by race and ethnic group and distinct differences in within-group income inequality. The groups with the highest incomes - Whites and Asians - also have the highest levels of within-group inequality and the lowest levels of within-group mobility. The reverse is true for the lowest-income groups: Blacks, American Indians, and Hispanics have lower within-group inequality and immobility. On the other hand, our low-income groups are also highly immobile when looking at overall, rather than within-group, mobility. These same groups also have a higher probability of experiencing downward mobility compared with Whites and Asians. We also find that within-group income inequality increased for all groups between 2000 and 2014, and the increase was especially large for Whites. In regression analyses using individual-level panel data, we find persistent differences by race and ethnicity in incomes over time. We also examine young tax filers (ages 25-35) and investigate the long-term effects of local economic and racial residential segregation conditions at the start of their careers. We find persistent long-run effects of racial residential segregation at career entry on the incomes of certain groups. The picture that emerges from our analysis is of a rigid income structure, with mainly Whites and Asians confined to the top and Blacks, American Indians, and Hispanics confined to the bottom.
View Full
Paper PDF
-
Longitudinal Environmental Inequality and Environmental Gentrification: Who Gains From Cleaner Air?
May 2017
Working Paper Number:
carra-2017-04
A vast empirical literature has convincingly shown that there is pervasive cross-sectional inequality in exposure to environmental hazards. However, less is known about how these inequalities have been evolving over time. I fill this gap by creating a new dataset, which combines satellite data on ground-level concentrations of fine particulate matter with linked administrative and survey data. This linked dataset allows me to measure individual pollution exposure for over 100 million individuals in each year between 2000 and 2014, a period of time has seen substantial improvements in average air quality. This rich dataset can then be used to analyze longitudinal dimensions of environmental inequality by examining the distribution of changes in individual pollution exposure that underlie these aggregate improvements. I confirm previous findings that cross-sectional environmental inequality has been on the decline, but I argue that this may miss longitudinal patterns in exposure that are consistent with environmental gentrification. I find that advantaged individuals at the beginning of the sample experience larger pollution exposure reductions than do initially disadvantaged individuals.
View Full
Paper PDF
-
Building the Prototype Census Environmental Impacts Frame
April 2023
Working Paper Number:
CES-23-20
The natural environment is central to all aspects of life, but efforts to quantify its influence have been hindered by data availability and measurement constraints. To mitigate some of these challenges, we introduce a new prototype of a microdata infras tructure: the Census Environmental Impacts Frame (EIF). The EIF provides detailed individual-level information on demographics, economic characteristics, and address level histories ' linked to spatially and temporally resolved estimates of environmental conditions for each individual ' for almost every resident in the United States over the past two decades. This linked microdata infrastructure provides a unique platform for advancing our understanding about the distribution of environmental amenities and hazards, when, how, and why exposures have evolved over time, and the consequences of environmental inequality and changing environmental conditions. We describe the construction of the EIF, explore issues of coverage and data quality, document patterns and trends in individual exposure to two correlated but distinct air pollutants as an application of the EIF, and discuss implications and opportunities for future research.
View Full
Paper PDF
-
Labor Market Effects of the Affordable Care Act: Evidence from a Tax Notch
July 2017
Working Paper Number:
carra-2017-07
States that declined to raise their Medicaid income eligibility cutoffs to 138 percent of the federal poverty level (FPL) under the Affordable Care Act (ACA) created a "coverage gap'' between their existing, often much lower Medicaid eligibility cutoffs and the FPL, the lowest level of income at which the ACA provides refundable, advanceable "premium tax credits'' to subsidize the purchase of private insurance. Lacking access to any form of subsidized health insurance, residents of those states with income in that range face a strong incentive, in the form of a large, discrete increase in post-tax income (i.e. an upward notch) at the FPL, to increase their earnings and obtain the premium tax credit. We investigate the extent to which they respond to that incentive. Using the universe of tax returns, we document excess mass, or bunching, in the income distribution surrounding this notch. Consistent with Saez (2010), we find that bunching occurs only among filers with self-employment income. Specifically, filers without children and married filers with three or fewer children exhibit significant bunching. Analysis of tax data linked to labor supply measures from the American Community Survey, however, suggests that this bunching likely reflects a change in reported income rather than a change in true labor supply. We find no evidence that wage and salary workers adjust their labor supply in response to increased availability of directly purchased health insurance.
View Full
Paper PDF
-
Income, Wealth, and Environmental Inequality in the United States
October 2024
Working Paper Number:
CES-24-57
This paper explores the relationships between air pollution, income, wealth, and race by combining administrative data from U.S. tax returns between 1979'2016, various measures of air pollution, and sociodemographic information from linked survey and administrative data. In the first year of our data, the relationship between income and ambient pollution levels nationally is approximately zero for both non-Hispanic White and Black individuals. However, at every single percentile of the national income distribution, Black individuals are exposed to, on average, higher levels of pollution than White individuals. By 2016, the relationship between income and air pollution had steepened, primarily for Black individuals, driven by changes in where rich and poor Black individuals live. We utilize quasi-random shocks to income to examine the causal effect of changes in income and wealth on pollution exposure over a five year horizon, finding that these income'pollution elasticities map closely to the values implied by our descriptive patterns. We calculate that Black-White differences in income can explain ~10 percent of the observed gap in air pollution levels in 2016.
View Full
Paper PDF
-
Mobility, Opportunity, and Volatility Statistics (MOVS):
Infrastructure Files and Public Use Data
April 2024
Working Paper Number:
CES-24-23
Federal statistical agencies and policymakers have identified a need for integrated systems of household and personal income statistics. This interest marks a recognition that aggregated measures of income, such as GDP or average income growth, tell an incomplete story that may conceal large gaps in well-being between different types of individuals and families. Until recently, longitudinal income data that are rich enough to calculate detailed income statistics and include demographic characteristics, such as race and ethnicity, have not been available. The Mobility, Opportunity, and Volatility Statistics project (MOVS) fills this gap in comprehensive income statistics. Using linked demographic and tax records on the population of U.S. working-age adults, the MOVS project defines households and calculates household income, applying an equivalence scale to create a personal income concept, and then traces the progress of individuals' incomes over time. We then output a set of intermediate statistics by race-ethnicity group, sex, year, base-year state of residence, and base-year income decile. We select the intermediate statistics most useful in developing more complex intragenerational income mobility measures, such as transition matrices, income growth curves, and variance-based volatility statistics. We provide these intermediate statistics as part of a publicly released data tool with downloadable flat files and accompanying documentation. This paper describes the data build process and the output files, including a brief analysis highlighting the structure and content of our main statistics.
View Full
Paper PDF
-
Using Internal Current Population Survey Data to Reevaluate Trends in Labor Earnings Gaps by Gender, Race, and Education Level
July 2008
Working Paper Number:
CES-08-18
Most empirical studies of trends in labor earnings gaps by gender, race or education level are based on data from the public use March Current Population Survey (CPS). Using the internal March CPS, we show that inconsistent topcoding in the public use data will understate these gaps and inaccurately capture their trends. We create a cell mean series beginning in 1975 that provides the mean of all values above the topcode for each income source in the public use March CPS and better approximate earnings gaps found in the internal March CPS than was previously possible using publically available data.
View Full
Paper PDF
-
Estimating Trends in U.S. Income Inequality Using the Current Population Survey: The Importance of Controlling for Censoring
August 2008
Working Paper Number:
CES-08-25
Using internal and public use March Current Population Survey (CPS) data, we analyze trends in US income inequality (1975'2004). We find that the upward trend in income inequality prior to 1993 significantly slowed thereafter once we control for top coding in the public use data and censoring in the internal data. Because both series do not capture trends at the very top of the income distribution, we use a multiple imputation approach in which values for censored observations are imputed using draws from a Generalized Beta distribution of the Second Kind (GB2) fitted to internal data. Doing so, we find income inequality trends similar to those derived from unadjusted internal data. Our trend results are generally robust to the choice of inequality index, whether Gini coefficient or other commonly-used indices. When we compare our best estimates of the income shares held by the richest tenth with those reported by Piketty and Saez (2003), our trends fairly closely match their trends, except for the top 1 percent of the distribution. Thus, we argue that if United States income inequality has been substantially increasing since 1993, such increases are confined to this very high income group.
View Full
Paper PDF