CREAT: Census Research Exploration and Analysis Tool

Revisiting the Unintended Consequences of Ban the Box

August 2025

Working Paper Number:

CES-25-58

Abstract

Ban-the-Box (BTB) policies intend to help formerly incarcerated individuals find employment by delaying when employers can ask about criminal records. We revisit the finding in Doleac and Hansen (2020) that BTB causes statistical discrimination against minority men. We correct miscoded BTB laws and show that estimates from the Current Population Survey (CPS) remain quantitatively similar, while those from the American Community Survey (ACS) now fail to reject the null hypothesis of no effect of BTB on employment. In contrast to the published estimates, these ACS results are statistically significantly different from the CPS results, indicating a lack of robustness across datasets. We do not find evidence that these differences are due to sample composition or survey weights. There is limited evidence that these divergent results are explained by the different frequencies of these surveys. Differences in sample sizes may also lead to different estimates; the ACS has a much larger sample and more statistical power to detect effects near the corrected CPS estimates.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
statistical, survey, respondent, minority, bias, hiring, discrimination, disadvantaged, sample, crime, compliance

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Metropolitan Statistical Area, Bureau of Labor Statistics, Center for Economic Studies, National Longitudinal Survey of Youth, Current Population Survey, Department of Economics, Cornell University, American Community Survey, General Education Development

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Revisiting the Unintended Consequences of Ban the Box' are listed below in order of similarity.