CREAT: Census Research Exploration and Analysis Tool

Response Error & the Medicaid undercount in the CPS

December 2016

Working Paper Number:

carra-2016-11

Abstract

The Current Population Survey Annual Social and Economic Supplement (CPS ASEC) is an important source for estimates of the uninsured population. Previous research has shown that survey estimates produce an undercount of beneficiaries compared to Medicaid enrollment records. We extend past work by examining the Medicaid undercount in the 2007-2011 CPS ASEC compared to enrollment data from the Medicaid Statistical Information System for calendar years 2006-2010. By linking individuals across datasets, we analyze two types of response error regarding Medicaid enrollment - false negative error and false positive error. We use regression analysis to identify factors associated with these two types of response error in the 2011 CPS ASEC. We find that the Medicaid undercount was between 22 and 31 percent from 2007 to 2011. In 2011, the false negative rate was 40 percent, and 27 percent of Medicaid reports in CPS ASEC were false positives. False negative error is associated with the duration of enrollment in Medicaid, enrollment in Medicare and private insurance, and Medicaid enrollment in the survey year. False positive error is associated with enrollment in Medicare and shared Medicaid coverage in the household. We discuss implications for survey reports of health insurance coverage and for estimating the uninsured population.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
estimating, statistical, report, respondent, survey, insurance, discrepancy, population, enrollment, medicare, medicaid, uninsured, enrollee, enrolled, mandated

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Securities and Exchange Commission, Current Population Survey, University of Minnesota, Social Security Number, Protected Identification Key, Medicaid Services, Social and Economic Supplement

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with πŸ”₯ are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Response Error & the Medicaid undercount in the CPS' are listed below in order of similarity.