Public support of research typically relies on the notion that universities are engines of economic development, and that university research is a primary driver of high wage localized economic activity. Yet the evidence supporting that notion is based on aggregate descriptive data, rather than detailed links at the level of individual transactions. Here we use new micro-data from three countries - France, Spain and the United States - to examine one mechanism whereby such economic activity is generated, namely purchases from regional businesses. We show that grant funds are more likely to be expended at businesses physically closer to universities than at those farther away. In addition, if a vendor has been a supplier to a grant once, that vendor is subsequently more likely to be a vendor on the same or related grants. Firms behave in a way that is consistent with the notion that propinquity is good for business; if a firm supplies a research grant at a university in a given year it is more likely to open an establishment near that university in subsequent years than other firms.
-
Occupational Classifications: A Machine Learning Approach
August 2018
Working Paper Number:
CES-18-37
Characterizing the work that people do on their jobs is a longstanding and core issue in labor economics. Traditionally, classification has been done manually. If it were possible to combine new computational tools and administrative wage records to generate an automated crosswalk between job titles and occupations, millions of dollars could be saved in labor costs, data processing could be sped up, data could become more consistent, and it might be possible to generate, without a lag, current information about the changing occupational composition of the labor market. This paper examines the potential to assign occupations to job titles contained in administrative data using automated, machine-learning approaches. We use a new extraordinarily rich and detailed set of data on transactional HR records of large firms (universities) in a relatively narrowly defined industry (public institutions of higher education) to identify the potential for machine-learning approaches to classify occupations.
View Full
Paper PDF
-
Tracing the Sources of Local External Economies
August 2004
Working Paper Number:
CES-04-13
In a cross-sectional establishment-level analysis using confidential secondary data, I evaluate the influence of commonly postulated sources of localized external economies'supplier access, labor pools, and knowledge spillovers'on the productivity of two U.S. manufacturing sectors (farm and garden machinery and measuring and controlling devices). Measures incorporating different distance decay specifications provide evidence of the spatial extent of the various externality sources. Chinitz's (1961) hypothesis of the link between local industrial organization and agglomeration economies is also investigated. The results show evidence of labor pooling economies and university-linked knowledge spillovers in the case of the higher technology measuring and controlling devices sector, while access to input supplies and location near centers of applied innovation positively influence efficiency in the farm and garden machinery industry. Both sectors benefit from proximity to producer services, though primarily at a regional rather than highly localized scale.
View Full
Paper PDF
-
Financing, Ownership, and Performance: A Novel, Longitudinal Firm-Level Database
December 2024
Working Paper Number:
CES-24-73
The Census Bureau's Longitudinal Business Database (LBD) underpins many studies of firm-level behavior. It tracks longitudinally all employers in the nonfarm private sector but lacks information about business financing and owner characteristics. We address this shortcoming by linking LBD observations to firm-level data drawn from several large Census Bureau surveys. The resulting Longitudinal Employer, Owner, and Financing (LEOF) database contains more than 3 million observations at the firm-year level with information about start-up financing, current financing, owner demographics, ownership structure, profitability, and owner aspirations ' all linked to annual firm-level employment data since the firm hired its first employee. Using the LEOF database, we document trends in owner demographics and financing patterns and investigate how these business characteristics relate to firm-level employment outcomes.
View Full
Paper PDF
-
USING LINKED CENSUS R&D-LRD DATA TO ANALYZE THE EFFECT OF R&D INVESTMENT ON TOTAL FACTOR PRODUCTIVITY GROWTH
January 1989
Working Paper Number:
CES-89-02
Previous studies have demonstrated that productivity growth is positively correlated with the intensity of R&D investment. However, existing studies of this relationship at the micro (firm or line of business) level have been subject to some important limitations. The most serious of these has been an inability to adequately control for the diversified activities of corporations. This study makes use of linked Census R&D - LRD data, which provides comprehensive information on each firms' operations at the 4-digit SIC level. A marked improvement in explaining the association between R&D and TFP occurs when we make appropriate use of the data by firm by industry. Significant relationships between the intensities of investment in total, basic, and company-funded R&D, and TFP growth are confirmed.
View Full
Paper PDF
-
Business Dynamics of Innovating Firms: Linking U.S. Patents with Administrative Data on Workers and Firms
July 2015
Working Paper Number:
CES-15-19
This paper discusses the construction of a new longitudinal database tracking inventors and patent-owning firms over time. We match granted patents between 2000 and 2011 to administrative databases of firms and workers housed at the U.S. Census Bureau. We use inventor information in addition to the patent assignee firm name to and improve on previous efforts linking patents to firms. The triangulated database allows us to maximize match rates and provide validation for a large fraction of matches. In this paper, we describe the construction of the database and explore basic features of the data. We find patenting firms, particularly young patenting firms, disproportionally contribute jobs to the U.S. economy. We find patenting is a relatively rare event among small firms but that most patenting firms are nevertheless small, and that patenting is not as rare an event for the youngest firms compared to the oldest firms. While manufacturing firms are more likely to patent than firms in other sectors, we find most patenting firms are in the services and wholesale sectors. These new data are a product of collaboration within the U.S. Department of Commerce, between the U.S. Census Bureau and the U.S. Patent and Trademark Office.
View Full
Paper PDF
-
Job Tasks, Worker Skills, and Productivity
September 2025
Authors:
John Haltiwanger,
Lucia Foster,
Cheryl Grim,
Zoltan Wolf,
Cindy Cunningham,
Sabrina Wulff Pabilonia,
Jay Stewart,
Cody Tuttle,
G. Jacob Blackwood,
Matthew Dey,
Rachel Nesbit
Working Paper Number:
CES-25-63
We present new empirical evidence suggesting that we can better understand productivity dispersion across businesses by accounting for differences in how tasks, skills, and occupations are organized. This aligns with growing attention to the task content of production. We link establishment-level data from the Bureau of Labor Statistics Occupational Employment and Wage Statistics survey with productivity data from the Census Bureau's manufacturing surveys. Our analysis reveals strong relationships between establishment productivity and task, skill, and occupation inputs. These relationships are highly nonlinear and vary by industry. When we account for these patterns, we can explain a substantial share of productivity dispersion across establishments.
View Full
Paper PDF
-
Do Market Leaders Lead in Business Process Innovation? The Case(s) of E-Business Adoption
April 2011
Working Paper Number:
CES-11-10
This paper investigates the relationship between market position and the adoption of IT-enabled process innovations. Prior research has focused overwhelmingly on product innovation and garnered mixed empirical support. I extend the literature into the understudied area of business process innovation, developing a framework for classifying innovations based on the complexity, interdependence, and customer impact of the underlying business process. I test the framework's predictions in the context of ebuying and e-selling adoption. Leveraging detailed U.S. Census data, I find robust evidence that market leaders were significantly more likely to adopt the incremental innovation of e-buying but commensurately less likely to adopt the more radical practice of e-selling. The findings highlight the strategic significance of adjustment costs and co-invention capabilities in technology adoption, particularly as businesses grow more dependent on new technologies for their operational and competitive performance.
View Full
Paper PDF
-
The Span of the Effect of R&D in the Firm and Industry
May 1994
Working Paper Number:
CES-94-07
Previous studies have found that the firm's own research and spillovers of research by related firms increase firm productivity. In contrast, in this paper we explore the impact of firm R&D on the productivity of its individual plants. We carry out this investigation of within firm R&D effects using a unique set of Census data. The data, which are from the chemicals industry, are a match of plant level productivity and other characteristics with firm level data on R&D of the parent company, cross-classified by location and applied product field. We explore three aspects of the span of effect of the firm's R&D: (i), the degree to which its R&D is "public" across plants; (ii), the extent of its localization in geographic space, and (iii), the breadth of its relevance outside the applied product area in which it is classified. We find that (i), firm R&D acts more like a private input which is strongly amortized by the number of plants in the firm; (ii), firm R&D is geographically localized, and exerts greater influence on productivity when it is conducted nearer to the plant; and (iii), firm R&D in a given applied product area is of limited relevance to plants producing outside that product area. Moreover, we find that while geographic localization remains significant, it diminishes over time. This trend is consistent with the effect of improved telecommunications on increased information flows within organizations. Finally, we consider spillovers of R&D from the rest of industry, finding that the marginal product of industry R&D on plant productivity, though positive and significant, is far smaller than the marginal product of parent firm's R&D.
View Full
Paper PDF
-
Clusters and Entrepreneurship
September 2010
Working Paper Number:
CES-10-31
This paper examines the role of regional clusters in regional entrepreneurship. We focus on the distinct influences of convergence and agglomeration on growth in the number of start-up firms as well as in employment in these new firms in a given region-industry. While reversion to the mean and diminishing returns to entrepreneurship at the region-industry level can result in a convergence effect, the presence of complementary economic activity creates externalities that enhance incentives and reduce barriers for new business creation. Clusters are a particularly important way through which location-based complementarities are realized. The empirical analysis uses a novel panel dataset from the Longitudinal Business Database of the Census Bureau and the U.S. Cluster Mapping Project (Porter, 2003). Using this dataset, there is significant evidence of the positive impact of clusters on entrepreneurship. After controlling for convergence in start-up activity at the region-industry level, industries located in regions with strong clusters (i.e. a large presence of other related industries) experience higher growth in new business formation and start-up employment. Strong clusters are also associated with the formation of new establishments of existing firms, thus influencing the location decision of multiestablishment firms. Finally, strong clusters contribute to start-up firm survival.
View Full
Paper PDF
-
High Growth Young Firms: Contribution to Job, Output and Productivity Growth
February 2017
Working Paper Number:
carra-2017-03
Recent research shows that the job creating prowess of small firms in the U.S. is better attributed to startups and young firms that are small. But most startups and young firms either fail or don't create jobs. A small proportion of young firms grow rapidly and they account for the long lasting contribution of startups to job growth. High growth firms are not well understood in terms of either theory or evidence. Although the evidence of their role in job creation is mounting, little is known about their life cycle dynamics, or their contribution to other key outcomes such as real output growth and productivity. In this paper, we enhance the Longitudinal Business Database with gross output (real revenue) measures. We find that the patterns for high output growth firms largely mimic those for high employment growth firms. High growth output firms are disproportionately young and make disproportionate contributions to output and productivity growth. The share of activity accounted for by high growth output and employment firms varies substantially across industries - in the post 2000 period the share of activity accounted for by high growth firms is significantly higher in the High Tech and Energy related industries. A firm in a small business intensive industry is less likely to be a high output growth firm but small business intensive industries don't have significantly smaller shares of either employment or output activity accounted for by high growth firms.
View Full
Paper PDF