CREAT: Census Research Exploration and Analysis Tool

Successor/Predecessor Firms

March 2002

Written by: Kevin L. McKinney

Working Paper Number:

tp-2002-04

Abstract

The goal of this research was to investigate the value added from using worker flows to identify the spurious births and deaths of businesses. We identify four types of "at risk" businesses from ES202 using the successor/predecessor flag and mimic the same categories using UI wage record data. We use two critical decision rules in the analysis: a successor firm has to have at least 80% of employment coming from the donor firm and (in two of the four categories) at least 5 employees have to come from the donor firm. We examine the sensitivity of the categories based on the percentage definition, and find that the results stay very similar, with the exception of the identification of the pure successor. We examine the sensitivity based on the count threshold, and find that there are enormous differences, particularly with identifying spinoff businesses.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
executive, employee, classification, worker, indicator, risk, birth

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Employer Identification Number

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Successor/Predecessor Firms' are listed below in order of similarity.