CREAT: Census Research Exploration and Analysis Tool

Race and Economic Opportunity in the United States: An Intergenerational Perspective

September 2018

Working Paper Number:

CES-18-40R

Abstract

We study the sources of racial and ethnic disparities in income using de-identified longitudinal data covering nearly the entire U.S. population from 1989-2015. We document three sets of results. First, the intergenerational persistence of disparities varies substantially across racial groups. For example, Hispanic Americans are moving up significantly in the income distribution across generations because they have relatively high rates of intergenerational income mobility. In contrast, black Americans have substantially lower rates of upward mobility and higher rates of downward mobility than whites, leading to large income disparities that persist across generations. Conditional on parent income, the black-white income gap is driven entirely by large differences in wages and employment rates between black and white men; there are no such differences between black and white women. Second, differences in family characteristics such as parental marital status, education, and wealth explain very little of the black-white income gap conditional on parent income. Differences in ability also do not explain the patterns of intergenerational mobility we document. Third, the black-white gap persists even among boys who grow up in the same neighborhood. Controlling for parental income, black boys have lower incomes in adulthood than white boys in 99% of Census tracts. Both black and white boys have better outcomes in low-poverty areas, but black-white gaps are larger on average for boys who grow up in such neighborhoods. The few areas in which black-white gaps are relatively small tend to be low-poverty neighborhoods with low levels of racial bias among whites and high rates of father presence among blacks. Black males who move to such neighborhoods earlier in childhood earn more and are less likely to be incarcerated. However, fewer than 5% of black children grow up in such environments. These findings suggest that reducing the black-white income gap will require efforts whose impacts cross neighborhood and class lines and increase upward mobility specifically for black men.

Document Tags and Keywords

Keywords Keywords are automatically generated using KeyBERT, a powerful and innovative keyword extraction tool that utilizes BERT embeddings to ensure high-quality and contextually relevant keywords.

By analyzing the content of working papers, KeyBERT identifies terms and phrases that capture the essence of the text, highlighting the most significant topics and trends. This approach not only enhances searchability but provides connections that go beyond potentially domain-specific author-defined keywords.
:
minority, black, hispanic, ethnicity, ethnic, heterogeneity, immigrant, white, discrimination, segregation, household, racial, race, generation, poverty, neighborhood, intergenerational, family, disparity, poorer

Tags Tags are automatically generated using a pretrained language model from spaCy, which excels at several tasks, including entity tagging.

The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
:
Department of Commerce, Harvard University, Decennial Census, Social Security, American Community Survey, Social Security Number, Protected Identification Key, Earned Income Tax Credit, W-2, 2020 Census, Disclosure Review Board

Similar Working Papers Similarity between working papers are determined by an unsupervised neural network model know as Doc2Vec.

Doc2Vec is a model that represents entire documents as fixed-length vectors, allowing for the capture of semantic meaning in a way that relates to the context of words within the document. The model learns to associate a unique vector with each document while simultaneously learning word vectors, enabling tasks such as document classification, clustering, and similarity detection by preserving the order and structure of words. The document vectors are compared using cosine similarity/distance to determine the most similar working papers. Papers identified with 🔥 are in the top 20% of similarity.

The 10 most similar working papers to the working paper 'Race and Economic Opportunity in the United States: An Intergenerational Perspective' are listed below in order of similarity.