Papers written by Author(s): 'Nicole Perales'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
The model is able to label words and phrases by part-of-speech, including "organizations." By filtering for frequent words and phrases labeled as "organizations", papers are identified to contain references to specific institutions, datasets, and other organizations.
No tags occur more than twice in this search.
No authors occur more than twice in this search.
Viewing papers 1 through 1 of 1
-
Working PaperNon-Random Assignment of Individual Identifiers and Selection into Linked Data: Implications for Research
January 2026
Working Paper Number:
CES-26-06
The U.S. Census Bureau's Person Identification Validation System facilitates anonymous linkages between survey and administrative records by assigning Protected Identification Keys (PIKs) to person records. While PIK assignment is generally accurate, some person records are not successfully assigned a PIK, which can lead to sample selection bias in analyses of linked data. Using the American Community Survey (ACS) and the Current Population Survey Annual Social and Economic Supplement (CPS ASEC) between 2005 and 2022, we corroborate and extend existing findings on the drivers of PIK assignment, showing that the rate of PIK assignment varies widely across socio-demographic subgroups. Using earnings as a test case, we then show that limiting a survey sample of wage earners to person records with PIKs or successful linkages to W-2 wage records tends to overestimate self-reported wage earnings, on average, indicative of linkage-induced selection bias. In a validation exercise, we demonstrate that reweighting methods, such as inverse probability weighting or entropy balancing, can mitigate this bias.View Full Paper PDF