CREAT: Census Research Exploration and Analysis Tool

Papers written by Author(s): 'Jay Stewart'

The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
Click here to search again

Frequently Occurring Concepts within this Search

Viewing papers 1 through 4 of 4


  • Working Paper

    Productivity Dispersion and Structural Change in Retail Trade

    December 2023

    Working Paper Number:

    CES-23-60R

    The retail sector has changed from a sector full of small firms to one dominated by large, national firms. We study how this transformation has impacted productivity levels, growth, and dispersion between 1987 and 2017. We describe this transformation using three overlapping phases: expansion (1980s and 1990s), consolidation (2000s), and stagnation (2010s). We document five findings that help us understand these phases. First, productivity growth was high during the consolidation phase but has fallen more recently. Second, entering establishments drove productivity growth during the expansion phase, but continuing establishments have increased in importance more recently. Third, national chains have more productive establishments than single-unit firms on average, but some single-unit establishments are highly productive. Fourth, productivity dispersion is significant and increasing over time. Finally, more productive firms pay higher wages and grow more quickly. Together, these results suggest that the increasing importance of large national retail firms has been an important driver of productivity and wage growth in the retail sector.
    View Full Paper PDF
  • Working Paper

    Opening the Black Box: Task and Skill Mix and Productivity Dispersion

    September 2022

    Working Paper Number:

    CES-22-44

    An important gap in most empirical studies of establishment-level productivity is the limited information about workers' characteristics and their tasks. Skill-adjusted labor input measures have been shown to be important for aggregate productivity measurement. Moreover, the theoretical literature on differences in production technologies across businesses increasingly emphasizes the task content of production. Our ultimate objective is to open this black box of tasks and skills at the establishment-level by combining establishment-level data on occupations from the Bureau of Labor Statistics (BLS) with a restricted-access establishment-level productivity dataset created by the BLS-Census Bureau Collaborative Micro-productivity Project. We take a first step toward this objective by exploring the conceptual, specification, and measurement issues to be confronted. We provide suggestive empirical analysis of the relationship between within-industry dispersion in productivity and tasks and skills. We find that within-industry productivity dispersion is strongly positively related to within-industry task/skill dispersion.
    View Full Paper PDF
  • Working Paper

    Productivity Dispersion, Entry, and Growth in U.S. Manufacturing Industries

    August 2021

    Working Paper Number:

    CES-21-21

    Within-industry productivity dispersion is pervasive and exhibits substantial variation across countries, industries, and time. We build on prior research that explores the hypothesis that periods of innovation are initially associated with a surge in business start-ups, followed by increased experimentation that leads to rising dispersion potentially with declining aggregate productivity growth, and then a shakeout process that results in higher productivity growth and declining productivity dispersion. Using novel detailed industry-level data on total factor productivity and labor productivity dispersion from the Dispersion Statistics on Productivity along with novel measures of entry rates from the Business Dynamics Statistics and productivity growth data from the Bureau of Labor Statistics for U.S. manufacturing industries, we find support for this hypothesis, especially for the high-tech industries.
    View Full Paper PDF
  • Working Paper

    Dispersion in Dispersion: Measuring Establishment-Level Differences in Productivity

    April 2018

    Working Paper Number:

    CES-18-25RR

    We describe new experimental productivity statistics, Dispersion Statistics on Productivity (DiSP), jointly developed and published by the Bureau of Labor Statistics (BLS) and the Census Bureau. Productivity measures are critical for understanding economic performance. Official BLS productivity statistics, which are available for major sectors and detailed industries, provide information on the sources of aggregate productivity growth. A large body of research shows that within-industry variation in productivity provides important insights into productivity dynamics. This research reveals large and persistent productivity differences across businesses even within narrowly defined industries. These differences vary across industries and over time and are related to productivity-enhancing reallocation. Dispersion in productivity across businesses can provide information about the nature of competition and frictions within sectors, and about the sources of rising wage inequality across businesses. Because there were no official statistics providing this level of detail, BLS and the Census Bureau partnered to create measures of within-industry productivity dispersion. These measures complement official BLS aggregate and industry-level productivity growth statistics and thereby improve our understanding of the rich productivity dynamics in the U.S. economy. The underlying microdata for these measures are available for use by qualified researchers on approved projects in the Federal Statistical Research Data Center (FSRDC) network. These new statistics confirm the presence of large productivity differences and we hope that these new data products will encourage further research into understanding these differences.
    View Full Paper PDF