Papers written by Author(s): 'Joseph Staudt'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
Viewing papers 1 through 6 of 6
-
Working PaperScientific Talent Leaks Out of Funding Gaps
February 2024
Working Paper Number:
CES-24-08
We study how delays in NIH grant funding affect the career outcomes of research personnel. Using comprehensive earnings and tax records linked to university transaction data along with a difference-in-differences design, we find that a funding interruption of more than 30 days has a substantial effect on job placements for personnel who work in labs with a single NIH R01 research grant, including a 3 percentage point (40%) increase in the probability of not working in the US. Incorporating information from the full 2020 Decennial Census and data on publications, we find that about half of those induced into nonemployment appear to permanently leave the US and are 90% less likely to publish in a given year, with even larger impacts for trainees (postdocs and graduate students). Among personnel who continue to work in the US, we find that interrupted personnel earn 20% less than their continuously-funded peers, with the largest declines concentrated among trainees and other non-faculty personnel (such as staff and undergraduates). Overall, funding delays account for about 5% of US nonemployment in our data, indicating that they have a meaningful effect on the scientific labor force at the national level.View Full Paper PDF
-
Working PaperA Tale of Two Fields? STEM Career Outcomes
October 2023
Working Paper Number:
CES-23-53
Is the labor market for US researchers experiencing the best or worst of times? This paper analyzes the market for recently minted Ph.D. recipients using supply-and-demand logic and data linking graduate students to their dissertations and W2 tax records. We also construct a new dissertation-industry 'relevance' measure, comparing dissertation and patent text and linking patents to assignee firms and industries. We find large disparities across research fields in placement (faculty, postdoc, and industry positions), earnings, and the use of specialized human capital. Thus, it appears to simultaneously be a good time for some fields and a bad time for others.View Full Paper PDF
-
Working PaperThe Color of Money: Federal vs. Industry Funding of University Research
September 2021
Working Paper Number:
CES-21-26
U.S. universities, which are important producers of new knowledge, have experienced a shift in research funding away from federal and towards private industry sources. This paper compares the effects of federal and private university research funding, using data from 22 universities that include individual-level payments for everyone employed on all grants for each university year and that are linked to patent and Census data, including IRS W-2 records. We instrument for an individual's source of funding with government-wide R&D expenditure shocks within a narrow field of study. We find that a higher share of federal funding causes fewer but more general patents, more high-tech entrepreneurship, a higher likelihood of remaining employed in academia, and a lower likelihood of joining an incumbent firm. Increasing the private share of funding has opposite effects for most outcomes. It appears that private funding leads to greater appropriation of intellectual property by incumbent firms.View Full Paper PDF
-
Working PaperAutomating Response Evaluation For Franchising Questions On The 2017 Economic Census
July 2019
Working Paper Number:
CES-19-20
Between the 2007 and 2012 Economic Censuses (EC), the count of franchise-affiliated establishments declined by 9.8%. One reason for this decline was a reduction in resources that the Census Bureau was able to dedicate to the manual evaluation of survey responses in the franchise section of the EC. Extensive manual evaluation in 2007 resulted in many establishments, whose survey forms indicated they were not franchise-affiliated, being recoded as franchise-affiliated. No such evaluation could be undertaken in 2012. In this paper, we examine the potential of using external data harvested from the web in combination with machine learning methods to automate the process of evaluating responses to the franchise section of the 2017 EC. Our method allows us to quickly and accurately identify and recode establishments have been mistakenly classified as not being franchise-affiliated, increasing the unweighted number of franchise-affiliated establishments in the 2017 EC by 22%-42%.View Full Paper PDF
-
Working PaperOccupational Classifications: A Machine Learning Approach
August 2018
Working Paper Number:
CES-18-37
Characterizing the work that people do on their jobs is a longstanding and core issue in labor economics. Traditionally, classification has been done manually. If it were possible to combine new computational tools and administrative wage records to generate an automated crosswalk between job titles and occupations, millions of dollars could be saved in labor costs, data processing could be sped up, data could become more consistent, and it might be possible to generate, without a lag, current information about the changing occupational composition of the labor market. This paper examines the potential to assign occupations to job titles contained in administrative data using automated, machine-learning approaches. We use a new extraordinarily rich and detailed set of data on transactional HR records of large firms (universities) in a relatively narrowly defined industry (public institutions of higher education) to identify the potential for machine-learning approaches to classify occupations.View Full Paper PDF
-
Working PaperEstimating the Local Productivity Spillovers from Science
January 2017
Working Paper Number:
CES-17-56
We estimate the local productivity spillovers from science by relating wages and real estate prices across metros to measures of scienti c activity in those metros. We address three fundamental challenges: (1) factor input adjustments using wages and real estate prices, along with Shepards Lemma, to estimate changes metros' productivity, which must equal changes in unit production cost; (2) unobserved differences in metros/causality using a share shift index that exploits historic variation in the mix of research in metros interacted with trends in federal funding for specific fields as an instrument; (3) unobserved differences in workers using data on the states in which people are born. Our estimates show a strong positive relationship between wages and scientifc research and a weak positive relationship for real estate prices. Overall, we estimate high rate of return to research.View Full Paper PDF