Using LEHD Data In Excess
Commuting and Jobs-Housing Studies: Concepts, Methods, and Examples

Mark W. Horner, Ph.D.
Dept. of Geography
Florida State University
Tallahassee, FL
mhorner@fsu.edu
Presentation Structure

1. Introduction to issues in commuting and jobs-housing balance
2. Review of important concepts and studies from selected literature
3. Examples of statistics, metrics, and applications
Interest in Commuting

- **Why urban commuting?**
 - Commuting leads to a fundamental activity (i.e., employment)
 - Although only 20-25% of total travel
 - It is during peak periods that cities’ roadways most congested
 - Reducing commuting could help alleviate congestion

- **How does land use affect commuting?**
 - A ‘geographic’ question
 - Does the spatial arrangement of cities shape travel patterns?
 - Commute lengths are longer when places are more distant from one another
Excess Commuting and Jobs-Housing Balance

- Excess commuting is
 - a benchmarking approach (Hamilton 1982)
 - the difference between observed commuting and a theoretical minimum commute (White 1988)
 - assumes people commute to job locations such that system travel costs are minimized (Buliung and Kanaroglou 2002)
 - useful for assessing the degree of regional jobs-housing balance (Giuliano and Small 1993)

- Jobs-housing balance is
 - the relative proximity or accessibility of residences to workplace in a given area (Shen 2000)
The Transportation Problem for finding the ‘Minimum’ Commute

\[T_r = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij} \]

(minimize total commuting costs)

Subject to

\[\sum_{i=1}^{n} x_{ij} = D_j \]

(jobs in each zone must be filled)

\[\sum_{j=1}^{m} x_{ij} = O_i \]

(workers living in each zone depart)

\[x_{ij} \geq 0 \]

(no negative zonal worktrip flows)

Where

\(T_r \) = Theoretical minimum journey to work commute

\(n \) = Number of origin TAZ locations

\(m \) = Number of destination TAZ locations

\(O_i \) = Number of workers living in zone \(i \)

\(D_j \) = Total employment in zone \(j \)

\(c_{ij} \) = Travel costs between zone \(i \) and zone \(j \)

\(x_{ij} \) = Journey to work trips from zone \(i \) to zone \(j \)
Introduction of a ‘Maximum’ Commute

- Integrate a *maximum commute* into excess commuting framework (Horner 2002)
 - Represents the most *inefficient* commuting scenario possible
 - Provides an upper bound on observed commuting
 - Extremes form a continuum
 - Analogies may be drawn with the concept of *carrying capacity*
 - Useful for comparative analysis
Why the Extremes Should be Considered:

Because we do not know how much commuting there actually *could be.*
Commuting Analysis for 26 Cities

Source: Horner (2002)
Findings

- Positive correlation found between theoretical minimum commute and observed commute (Horner 2002)
 - Minimum commute is rigorous indicator of jobs-housing balance (Giuliano and Small 1993)
 - Suggests ‘better’ jobs-housing balance could lead to reduced commuting (Horner 2002)

- Max. commute measures *polycentricity*
Theoretical Minimum Commute

- The *theoretical minimum commute* has emerged in the literature as a basic measure of jobs-housing balance (Layman and Horner 2010)
 - Predicated on the concept that the ‘quality’ of the optimality derived from reassigning workers to job-locations tells us something about urban structure
 - Quantified in ‘minutes’ or ‘miles’
 - In a comparative sense, lower theoretical minimum commutes mean greater jobs-housing balance
Trends towards policy-related analyses

- Literature reviews in Ma and Banister (2006), Charron (2007), Layman and Horner (2010)

- Increasing body of research discussing how excess commuting metrics can be used in more policy-oriented situations
 - Merriman et al. (1995)
 - Scott et al. (1997)
 - Frost et al. (1998)
 - Murphy (2009)
 - Loo and Chow (2011)
 - Etc.
Residential and Job Locations (2000 CTPP)
Zooming in: How metrics help understand local change

- Source: Horner (2007)
Beyond Aggregate: Intraurban Analysis

- Extending to compare aggregate statistics at an interurban level (min, max, obs)
 - Analyze commute issues within urban areas
- Can compute simple jobs housing ratios
- Can compute each zone’s min, obs, or max average commute (Horner 2007)
 - Can look at out-commutes (from residences)
 - Can look at in-commutes (incoming to employment centers)
Commute Metrics
Are These A Jobs-Housing Metric?

- Many commonly used measures are overly simplistic
 - simple ratio method of J/H ignores regional context
 - Myopic; measures assume zones do not interact with region
 - Buffering approaches/catchment areas are arbitrary

- May be appropriate to view average in and out commutes as proxies for jobs-housing balance (or accessibility)
 - e.g. minimum avg. out-commutes as a proxy for JHB
Past Challenges: Comparing ‘90 and ‘00 data

- Underlying difficulties in making intraurban comparisons that depend on matching spatial units
 - Number of spatial units increased from 1990 to 2000
 - Extents of MSAs widened to include more counties
 - Challenge is when spatial units compared across time

- Solution:
Conversion Example
Other Proposed Metrics

- Idea of ‘maximum commute’ sparked debate:
 - Is the maximum an appropriate upper bound on the observed commute?

- Other proposed approaches
 - Proportionally Matched Commute (Yang and Ferreira 2008)
 - Random Commute (Charron 2007; Murphy 2009)
Scale Issues?

- Input data are typically some form of zonation
 - e.g. census tracts, TAZs, etc.
- Past research has documented issues with respect to scale and unit definition (Modifiable Areal Unit Problem - MAUP)
 - e.g. Small and Song 1992, Giuliano and Small 1993, Horner and Murray 2002
Scale Figure
LEHD Data

- **LODES**
 - Commute flows of workers - census block scale
- Available for multiple years
- Can get counts of workers/jobs by zones
- Flows can be disaggregated by selected attributes (income, age, etc.)
Potential Interest

- Highly spatially disaggregate data
- Available for multiple places, times
 - Comparative studies of transportation, land use relations may be possible
- Flexibility to define study boundaries
 - Ability to look more at the ‘closed region’ issue
 - What are the consequences of choosing a particular boundary?
Example: Sedgwick County (KS)
Example: Sedgwick County (KS)
Summary

- Growing literature that looks at the relations between land use and transportation
 - Complimentary to individual level studies
 - Focus on commuting ‘outcomes’
- LEHD data could be increasingly used in this area
Thank You

Mark W. Horner

mhorner@fsu.edu