Using the LED Program to Substantiate Travel Demand Forecast Modeling

March 2012

Background

Since 1980, The Goodman Corporation (TGC) has assisted private and public entities plan, finance and implement various land use and mobility projects throughout the nation.

On behalf of its Houston-based clients, TGC is analyzing the demand for park & ride facilities within the city's loop system with services to major destinations.

City of Houston Major Roadway Network

Agenda

- Problem Statement
- Alternative to Auto Public Transportation
- Travel Demand Forecast Model Overview
- Utilizing LED to Substantiate Travel Demand Forecast Modeling
- Benefits and Challenges of using LED in Travel Demand Forecast Modeling

Problem Statement

The overcrowding of the major thoroughfares during commutes causes significant time delays and contributes to poor air quality in Houston, Texas.

Hwy 59 in Houston, Texas

Major Destinations in Houston

- Central Business Dist.
- •Texas Medical Center
- •Uptown Galleria
- Greenway Plaza
- University of Houston

Average Commute Time to Work

MEANS OF TRANSPORTATION TO WORK BY TRAVEL TIME TO WORK

Universe: Workers 16 years and over who did not work at home 2010 American Community Survey 1-Year Estimates

Public Transportation – Types of Park & Ride Facilities

Local P&R

Service

- Remote Long-Distance Park & Ride Distance (40-80 miles)
- Suburban Park & Ride Distance - (4-30 miles)
- Local Service Urban Park & Ride Distance - (1-4 miles)
- Peripheral Park & Ride
 Distance (Edge of Destination)

Source: Guide For Park-and-Ride Facilities. American Association of State Highway and Transportation Officials (2004)

Accurate Travel Forecast Modeling is Key

An accurate 4-step Travel Demand Forecast Model can aid planners in the development of a new or expanded Park & Ride facility. Trip distribution is the second of four steps.

- 1. Trip Generation
- 2. Trip Distribution
 - 3. Mode Choice
- 4. Trip Assignment

Trip Distribution Check

• Trip distribution is a process used to model where trips are beginning and ending.

• It is often one of the more difficult steps of the 4-step modeling process.

• It is possible to use LED and other data to substantiate the accuracy of the Trip Distribution output.

Data Sources

- Houston-Galveston Area Council (H-GAC) Trip Distribution Table
 - 3,000 traffic analysis zone pairs
- Survey data from 2008 & 2011 employee survey
 - 2008 Uptown-Houston Employer Survey 12,080 surveyed
 - 2011 Uptown-Houston Employer Survey 956 surveyed
- LED 2008 Distance-Direction Home-Work Data

Zip Code Sub-Regions

LED Data – GIS Results

Results - Trip Distribution Check

H-GAC's TDF Model HBW distributions are consistent with the 2008 & 2011 zip code data, and U.S. Census Longitudinal Employer-Household Dynamics (LED) data.

Region	HGAC Data	Share	2011 Survey Zip Code Data	Share	2008 Survey Zip Code Data	Share	LED Code 2008 Data	Share
Within 5 Miles of Uptown (Outside Capture Area)	22,327	28%	282	29%	3,562	29%	11,169	23%
Park and Ride Capture Area	22,145	28%	326	34%	3,966	33%	14,165	30%
Far North	8,907	11%	108	11%	1,169	10%	5,219	11%
East Houston	5,855	7%	18	2%	273	2%	2,838	6%
South and Southeast Houston	4,472	6%	20	2%	224	2%	2,003	4%
Far South and Southeast	5,589	7%	93	10%	1,397	12%	5,815	12%
North Houston	3,487	4%	9	1%	147	1%	1,884	4%
Far East and Northeast	3,950	5%	33	3%	394	3%	2,226	5%
Rosenberg & Sugar Land	2,558	3%	53	6%	827	7%	1,979	4%
Far Northwest	872	1%	10	1%	106	1%	593	1%
Far West	193	0%	4	0%	23	0%	36	0%
Total	80,355		956		12,088		47,927	

LED Benefits and Challenges in Park & Ride Facility Planning

- Benefits Within a large-scale study area, LED can enhance the confidence in the trip distribution output of a 4-step model.
- Challenges Within a small-scale study area, payroll data does not necessarily correlate with employment location, which can be especially problematic.

Photo Source: Houston METRO

Re-Cap

- Problem Statement
- Alternative to Auto Public Transportation
- Travel Demand Forecast Model Overview
- Utilizing LED to Substantiate Travel Demand Forecast Modeling
- Benefits and Challenges of using LED in Travel Demand Forecast Modeling

Questions/Comments:

Robert McHaney

The Goodman Corporation

(512) 236-8002, ext. 304

rmchaney@thegoodmancorp.com

www.thegoodmancorp.com

