

Using LED to Locate Parking Demand in Downtown Austin, TX

March 2010

Background

Since 1980, The Goodman Corporation (TGC) has assisted private and public entities plan, finance and implement various land use and mobility projects throughout the nation.

In 2009, a Texas regional mobility authority hired TGC to examine the viability of transit along proposed managed lanes operating on a major arterial from the suburbs to downtown Austin. As part of the study, TGC examined the availability of parking in downtown Austin.

Agenda

- Why is parking supply, cost, access and policy in the urban core important?
- What is the demand for transit trips along the proposed managed lane? (Utilizing the LED program)
- What methodologies were used for the Parking Study? (Utilizing the LED program)
- What were the benefits and challenges of using LED in the Parking Study?

Why is parking supply, cost, access and policy in the urban core important?

A city's parking policy will influence parking supply, price and availability, which in-turn will affect parking demand.

Positive Incentives for SOV

- •Ample supply of parking
- •Low cost to park
- •Convenient access to parking

Negative Incentives for SOV

- •Low supply of parking
- •High cost to park
- •Poor access to parking

What is the transit demand along the proposed managed lane?

To measure transit demand, TGC used home-to-work travel data from the U.S. Census Bureau's 2006 Local Employment Dynamics (LED) database.

Southbound HBW Trips

What are the characteristics of the transit demand along the proposed managed lane?

F	Paired Work Area Profile Rep	oort			
Total Primary Jobs	Northbound HBW Trips		Southbound HBW trips		
	20	2006		2006	
	Count	Share	Count	Share	
Total Primary Jobs	159	100.0%	4,718	100.0%	
Jobs by Worker Age					
	20	2006		2006	
	Count	Share	Count	Share	
Age 30 or younger	61	38.4%	936	19.8%	
Age 31 to 54	77	48.4%	3,221	68.3%	
Age 55 or older	21	13.2%	561	11.9%	
Jobs by Earnings Paid					
	20	2006		2006	
	Count	Share	Count	Share	
\$1,200 per month or less	21	13.2%	439	9.3%	
\$1,201 to \$3,400 per month	48	30.2%	1,673	35.5%	
More than \$3,400 per month	90	56.6%	2,606	55.2%	
Jobs by Industry Type					
	20	2006		2006	
	Count	Share	Count	Share	
Goods Producing	39	24.5%	85	1.8%	
Trade, Transportation, and Utilities	42	26.4%	224	4.7%	
All Other Services	78	49.1%	4,409	93.5%	

Methodology Used to Estimate Parking Demand in Downtown Austin Using LED

- Estimate the employment of the urban core.
- Employment was calculated using LED for each census block.

Methodology Used to Estimate Parking Demand in Downtown Austin Using LED

- Adjustments were made to the LED data based on field work.
- These employment figures were compared to other estimates derived from the International Building Code and Institute of Transportation of Engineers.

Other Data Used to Estimate Parking Demand in Downtown Austin

- Utilizing tax records, each parcel was analyzed to determine square footage and usage.
- Employment was then calculated by industry standard employee per square foot factors and occupancy rate.
- Both IBC and TTI factors were applied.

Methodology of Parking Supply in Downtown Austin

- Examine previous parking studies.
- Review large scale projects from the last completed comprehensive study.
- Complete field work to determine accuracy.

Benefits and challenges of using LED in the Austin Downtown Parking Study

- Benefits The study area can be any polygon desired and employment data is useful in transit analyses.
- Challenges Payroll data does not necessarily correlate with employment location, which can be especially problematic when working within a small-scale.

Conclusion

- Parking supply, cost, access and policies
- Utilizing LED in transit demand analysis
- Utilizing LED for employment projection
- Comparing LED data to other sources
- Benefits and challenges of using LED in a parking study

Questions/Comments: Robert McHaney The Goodman Corporation (512) 236-8002 *mchaney@thegoodmancorp.com* www.thegoodmancorp.com

