
Technical Appendices for Post-Secondary Employment Outcomes

Data

A Appendix about Protection System

This appendix details how we protect the released data. First, we discuss the Laplace noise infusion,

which is used to protect the count queries for Graduate Earnings and Pipeline Flows. Second, we

detail how we use Laplace noise in the histogram approach to calculate percentiles of earnings within

a cell. This appendix was the basis for the paper from (1). In that paper, we outline a number of

ways the earnings percentiles could be protected, while this appendix only outlines the method used

for PSEO.

A.1 Protecting Count Data: Laplacian Noise Infusion

Consider a dataset d, and a neighboring dataset d′ which differs by one observation. Furthermore,

consider a count query qc(.) on a dataset, which returns the number of observations with certain

attributes, which we will refer to as X. Now consider the cases below:

|qc(d)− qc(d′)| =


1, if the differing observation has the attributes X

0, otherwise.
(1)

The sensitivity S(qc) is then the smallest number such that for any neighboring datasets,

|qc(d)− qc(d′)| ≤ S(qc)

In the case of the count query, S(qc) = 1. Therefore, for any count query qc(d), qc(d) + ζ is

ε-differentially private, where ζ ∼ X − Y , where X,Y ∼ Geometric(p) where p = 1 − 1
eε . For
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these tables, all the counts are integers, and therefore we will draw noise using the geometric noise

mechanism.

A.2 Protecting Percentiles: Histogram Approach

To protect percentiles, we use an approach called the histogram approach.

Consider a dataset d, which has sorted values e1, e2, ..., eN and a function H(.) that assigns each

value ei into a bin, grouping them together. Formally, this function is defined as:

H(ei) =



1, if ei ∈ [b1, b2)

...

j, if ei ∈ [bj , bj+1)

...

M − 1, if ei ∈ [bM−1, bM )

M, if ei ≥ bM

(2)

Where the borders of the histogram bins, bi, are public information. The key decision in

implementing this protection method is determining how to set the bin definitions, which we

describe in the next subsection.

Choosing Bin Definitions

We use the following bin cutoffs for the PSEO protection system. The bottom cutoff is $10,000 (in

2016 dollars), which is very close to the minimum value in the data by construction, given that we

restrict the sample based on earnings. For the next 19 bis, we choose every 5th percentile of the log

normal distribution with mean 11.003 and standard deviation 0.753.1 Additionally, for bM , we use

the 97.5th percentile value of the distribution, which is about $260,000. Finally, for any earnings

greater than that value, we count it in the final bin, M . Together, we have 21 bins.

For reference, these histogram values are in the appendix.
1The log normal distribution is a good approximation of the overall earnings distribution. The mean and standard

deviation were calculated using the 5-year ACS Public-Use Microsample. We calculated the mean and standard
deviation of wage and salary income for employed individuals with a BA or above.
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Queries to Protect

From the definition of the histogram function above, the set of queries we protect are of the form qc
j ,

which returns the count of the observations in a given bin j. Additionally, these queries imply the

corresponding empirical CDF:

F (j) =
∑j

i=1 q
c
i∑M

i=1 q
c
i

(3)

The sensitivity of each of these queries is 1, and therefore we can protect each of these queries

with privacy loss ε by adding geometric noise as described above in Section A.1. Therefore, our

protected counts are:

q̃c
j = qc

j + ζ

Where ζ is drawn from a geometric noise distribution. The resulting histogram list of counts is

ε-differentially private (Proposition 1 in (2)), and any function of these counts is also ε-differentially

private because of the composition properties of differential privacy.2

Calculating Protected Percentiles

We use these fuzzed values to create a fuzzed CDF,

F̃ (j) =
∑j

i=1 q̃
c
i∑M

i=1 q̃
c
i

If we assume that earnings are distributed uniformly within a bin, we can use F̃ (j) to extract

protected percentiles.3

To calculate a percentile Y, suppose that it is in bin J such that

∑J−1
i=1 q̃

c
i∑M

i=1 q̃
c
i

< Y/100 ≤
∑J

i=1 q̃
c
i∑M

i=1 q̃
c
i

(4)

Then, the Yth percentile is bJ + (bJ+1 − bJ) × (Y/100×
PJ q̃ci )−

PJ−1 q̃ci
q̃cJ

.4 In the case where a

2This result from Hay et al. (2009) allows the list of values (q̃1, q̃2, ..., q̃M ) to also be considered releasable.
3Note that F̃ (j) will not necessarily be a true CDF, because there may be cases when q̃j < 0.
4In words, if a bin J includes the Yth percentile, and the Yth percentile is W of the way through the interval
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percentile is in the largest bin, we define bM+1 to be the 99.9th percentile of earnings from the log

normal distribution, which is 614597.5

We use this technique to calculate the 25th, 50th, and 75th percentile values.

Calculating Protected Counts

We use the fuzzed counts from the histogram approach to calculate the total cell count. In this

application, this is just a sum of all the histogram counts: cellcountc =
∑M

i=1 q̃
c
i .

We determine whether or not to release values for a cell based on the total protected cell count,

because values are noisier for smaller cells. Specifically, we do not release any data for cells with

protected counts below 30. When we release tables, we will simply indicate that the cell count is

below 30 and publish missing values.

A.3 Protecting Counts in a Sparse Matrix: Employment Flows

The EF data product is a set of count queries, and we will protect these queries using the geometric

mechanism for noise.

Consider a flow (Flow(clfg,ks),T ) from institution c, degree level l, degree field f , and graduation

cohort g, into industry k and state s, T years after graduation.6 To protect the flow count, we use

the geometric noise mechanism to add noise to the count such that the protected count is:

F̃ low(clfg,ks),T = Flow(clfg,ks),T + η

where η ∼ X − Y , where X,Y ∼ Geometric(p) where p = 1− 1
eε .

7 Therefore, F̃ low(clfg,ks),T is

ε-differentially private.

defined by bin J, then the Yth percentile is the lower-bound value of bin J, bJ , plus W × width.
5We calculate the percentile for the smallest bin such that Equation 4 is satisfied. This addresses the issue of

negative counts in a subsequent bin, since it is possible for Equation 4 to be fulfilled in two distinct bins if the
intervening bins have negative counts.

6One possible destination in the matrix is non-employed or marginally attached to the labor force, which we denote
as industry ZZ and state Z

7In our setting, ε = 1.5
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A.3.1 Post-Processing Protected Counts

Because the flows matrix is sparse, there will be a number of cases where F̃ low(clfg,ks),T < 0. While

this flow is still ε-differentially private, it does not make sense logically from the perspective of a

user since flows are strictly non-negative.

To that end, we post-process the differentially private counts in order to preserve the logic of

the flows data. We post-process the flows in three steps, which we describe in detail. First, any

flow that is negative is set to zero. Second, we calculate the difference between the new total count

within a (c, g, f, d, T ) cell before and after step 1.8 Finally, we adjust the counts of other non-zero

cells so that the new total count within a (c, g, f, d, T ) cell is the same. We describe this formally in

the next sub-section.

A.3.2 Correcting Cell Counts

Because of the correction of negative flows above, as long as any flows are negative,
∑

k,s
ˆFlow(clfg,ks),T >∑

k,s
˜Flow(clfg,ks),T , and therefore we need to correct the other counts in the matrix such that the

overall total is unchanged. We do this correction by randomly selecting cells with non-zero counts

in them, and subtracting, thereby adjusting to total count.

However, we do not want each cell’s probability of being selected to be equal, because we know

(from external sources) that some flows are less likely than others. We use three sources of data to

weight a cell’s probability of being selected for correction.9

• State-to-State Job-to-Job (J2J) Flows: We use the job-to-job hires to destination states

from the state of the institution. We call this value Jh,d, for the flows from home state h to

destination state d. This addresses the fact that some states are more connected than others;

it is less likely for a graduate in Colorado to move to Maine than Arizona. J2J data are drawn

from the 2011-2015 period, where all states are available.

• Quarterly Census of Employment and Wages state-by-industry employment data: We use

QCEW state-by-industry employment (Emps,k) to address the fact that within a state, some

industries are smaller and therefore less likely to employ a graduate. For example, a flow into
8If the total is negative, the entire cell is set to zero.
9The flow to “non-observed/insufficient” employment is given an arbitrary probability of selection for correction.
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Information is more likely in California than a flow into mining. These data are drawn from

the full range of PSEO earnings periods.

• Institution by Field (2-digit CIP) to Industry Sector Flows: Some institutions and majors have

large flows to specific industry sectors, which may have small overall employment (e.g. Engineer-

ing to Mining sector). We call these flows INDFLOWc,f,k =
∑

g

∑
d

∑
T

∑
s F̃ low(c,g,f,d,T ),k,s,

and use the protected counts from above.

To weight the cells for selection in the below procedure, we multiply all of these values together

and use the inverse, such that the weight = 1
Jj,dEmps,kINDFLOWc,f,k

. In the case of any of these

components being zero (or negative) we assign a value of 1. Using these weights, the algorithm for

the correction is below.

1. Let F =
∑

k,s F̂ low(clfg,ks),T − F̃ low(clfg,ks),T which is number of jobs that need to be sub-

tracted from the overall cell for the counts to be equal.

2. Randomly draw across the cells (using the weights above) with non-zero counts and each time

a cell is drawn, subtract one from the flow count.

3. Repeat step 2 F times.

4. Recalculate the new flows Flow(clfg,ks),T after these corrections.

By construction,
∑

k,s Flow(clfg,ks),T =
∑

k,s F̃ low(clfg,ks),T . These are the counts that are

released to the public, as they satisfy the logical constraints on the data, while also being a

consistent measure of the number of employed individuals.

A.3.3 Suppression of Division Flows Data

Using the protected data at the state level, we will determine if missing data from a particular state

causes an appreciable impact on the division-level flows that we report publicly. First, aggregate

institution to division flows are calculated for post-graduation year observations for which all states

are available. Then, we identify years for which earnings data are only available for a subset of

states. We recalculate the division flows from the complete period, using only the subset of states,
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and then make an estimate of the share of flows that are unobserved. If the unobserved share is

above a metric (TBD), the flows will be suppressed.

B Appendix about Reallocation to 2020 CIP Codes

All the data releases prior to 2020 were released in the 2010 CIP coding edition (formally, CIP-

2010).10 With the release of the most recent data, we needed to update the data outputs into 2020

CIP codes.

There are two main constraints on this process. First, the crosswalks from CIP-2010 to CIP-2020

are at the 6 digit level, while we report outcomes at the 4- and 2-digit level. Second, because we

have already released the outcomes and incurred a specific privacy loss, we cannot simply re-release

the new data after applying the crosswalks to the microdata.

This appendix presents the methodology we use to recast the earnings histograms and employment

flows data into CIP-2020.

B.1 Step 1: Calculate the posterior for 2010-2020 transitions

First, we identify all possible transitions at the 2- and 4-digit CIP level, based on transitions at the

6-digit level, using the crosswalk provided by National Center for Education Statistics. We then

take the historical IPEDS data, crosswalked to CIP-2010, and cast it into CIP-2020 at the six-digit

level.

If IPEDS does not report any individuals making a transition, assign an arbitrarily small weight.

Aggregate the counts for 2 and 4 digit before and after codes, at the following levels:

• Degree level x OPEID x graduation cohort

• Degree level x OPEID (across cohorts)

• Degree level (across OPEIDs)

• All degree levels
10This includes data from Colorado, University of Texas System, University of Michigan-Ann Arbor, and University

of Wisconsin-Madison.
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For all 2010 2/4 digit codes at all aggregation levels, we calculate the share of the counts in each

2020 2/4 digit code, which we use as probability weights in the next step.

B.2 Step 2: Allocate counts to 2020 codes

Our data tables which are protected by differential privacy (described in the previous appendix

section) are counts. These steps describe how we reallocate those counts from CIP-2010 to CIP-2020.

The below steps are in order of priority.

1. If a 2010 code (at 2/4 digit level) always has same destination code, assign code directly.

2. Select codes where IPEDS counts are inconsistent or unavailable have hardcoded transitions

(some codes are not reported to IPEDS, but in our data)

3. Codes that have multiple possible destinations in IPEDS are assigned probabilistically for

each histogram bin count, using the tables created in Step 1.

4. Total counts will match at the OPEID x degree level x grad cohort x year postgrad level,

between the 2010 CIP vintage and 2020 CIP vintage.

The above algorithm is used to recast the histogram bin counts and the flows data before the

corrections are applied (when flows/bin counts may be negative). After the protected flow counts

are reallocated, they are run through the same correction algorithm to correct for negative flows.
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Table 1: Histogram bin values

Bin Lower Bound Upper Bound
1 10000 17403
2 17403 22876
3 22876 27512
4 27512 31857
5 31857 36128
6 36128 40449
7 40449 44914
8 44914 49605
9 49605 54609
10 54609 60027
11 60027 65982
12 65982 72639
13 72639 80226
14 80226 89080
15 89080 99735
16 99735 113106
17 113106 130970
18 130970 157509
19 157509 207050
20 207050 262475
21 262475 614597
Notes: Except for the lowest value, these are all per-
centiles from a log normal distribution with mean
11.003 and standard deviation 0.753. Any observa-
tion will be classified into the final bin (21) if it has
a value above 262475. For purposes of calculating the
percentiles, we use the upper bound value for bin 21 of
614597, which is the 99.9th percentile of the log normal
distribution.
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