Papers Containing Tag(s): 'Bureau of Labor Statistics'
The following papers contain search terms that you selected. From the papers listed below, you can navigate to the PDF, the profile page for that working paper, or see all the working papers written by an author. You can also explore tags, keywords, and authors that occur frequently within these papers.
See Working Papers by Tag(s), Keywords(s), Author(s), or Search Text
Click here to search again
Frequently Occurring Concepts within this Search
Viewing papers 81 through 90 of 329
-
Working PaperWhy are employer-sponsored health insurance premiums higher in the public sector than in the private sector?
February 2019
Working Paper Number:
CES-19-03
In this article, we examine the factors explaining differences in public and private sector health insurance premiums for enrollees with single coverage. We use data from the 2000 and 2014 Medical Expenditure Panel Survey-Insurance Component, along with decomposition methods, to explore the relative explanatory importance of plan features and benefit generosity, such as deductibles and other forms of cost sharing, basic employee characteristics (e.g., age, gender, and education), and unionization. While there was little difference in public and private sector premiums in 2000, by 2014, public premiums had exceeded private premiums by 14 to 19 percent. We find that differences in plan characteristics played a substantial role in explaining premium differences in 2014, but they were not the only, or even the most important, factor. Differences in worker age, gender, marital status, and educational attainment were also important factors, as was workforce unionization.View Full Paper PDF
-
Working PaperPredictive Analytics and Organizational Architecture: Plant-Level Evidence from Census Data
January 2019
Working Paper Number:
CES-19-02
We examine trends in the use of predictive analytics for a sample of more than 25,000 manufacturing plants using proprietary data from the US Census Bureau. Comparing 2010 and 2015, we find that use of predictive analytics has increased markedly, with the greatest use in younger plants, professionally-managed firms, more educated workforces, and stable industries. Decisions on data to be gathered originate from headquarters and are associated with less delegation of decision-making and more widespread awareness of quantitative targets among plant employees. Performance targets become more accurate, long-term oriented, and linked to company-wide performance, and management incentives strengthen, both in terms of monetary bonuses and career outcomes. Plants increasing predictive analytics become more efficient, with lower inventory, increased volume of shipments, narrower product mix, reduced management payroll and increased use of flexible and temporary employees. Results are robust to a specification based on increased government demand for data.View Full Paper PDF
-
Working PaperEarly-Stage Business Formation: An Analysis of Applications for Employer Identification Numbers
December 2018
Working Paper Number:
CES-18-52
This paper reports on the development and analysis of a newly constructed dataset on the early stages of business formation. The data are based on applications for Employer Identification Numbers (EINs) submitted in the United States, known as IRS Form SS-4 filings. The goal of the research is to develop high-frequency indicators of business formation at the national, state, and local levels. The analysis indicates that EIN applications provide forward-looking and very timely information on business formation. The signal of business formation provided by counts of applications is improved by using the characteristics of the applications to model the likelihood that applicants become employer businesses. The results also suggest that EIN applications are related to economic activity at the local level. For example, application activity is higher in counties that experienced higher employment growth since the end of the Great Recession, and application counts grew more rapidly in counties engaged in shale oil and gas extraction. Finally, the paper provides a description of new public-use dataset, the 'Business Formation Statistics (BFS),' that contains new data series on business applications and formation. The initial release of the BFS shows that the number of business applications in the 3rd quarter of 2017 that have relatively high likelihood of becoming job creators is still far below pre-Great Recession levels.View Full Paper PDF
-
Working PaperGrowing Oligopolies, Prices, Output, and Productivity
November 2018
Working Paper Number:
CES-18-48
American industries have grown more concentrated over the last forty years. In the absence of productivity innovation, this should lead to price hikes and output reductions, decreasing consumer welfare. Using public data from 1972-2012, I use price data to disentangle revenue from output. Difference-in-difference estimates show that industry concentration increases are positively correlated to productivity and real output growth, uncorrelated with price changes and overall payroll, and negatively correlated with labor's revenue share. I rationalize these results in a simple model of competition. Productive industries (with growing oligopolists) expand real output and hold down prices, raising consumer welfare, while maintaining or reducing their workforces, lowering labor's share of output.View Full Paper PDF
-
Working PaperDevelopment of Survey Questions on Robotics Expenditures and Use in U.S. Manufacturing Establishments
October 2018
Working Paper Number:
CES-18-44
The U.S. Census Bureau in partnership with a team of external researchers developed a series of questions on the use of robotics in U.S. manufacturing establishments. The questions include: (1) capital expenditures for new and used industrial robotic equipment in 2018, (2) number of industrial robots in operation in 2018, and (3) number of industrial robots purchased in 2018. These questions are to be included in the 2018 Annual Survey of Manufactures. This paper documents the background and cognitive testing process used for the development of these questions.View Full Paper PDF
-
Working PaperHiring through Startup Acquisitions: Preference Mismatch and Employee Departures
September 2018
Working Paper Number:
CES-18-41
This paper investigates the effectiveness of startup acquisitions as a hiring strategy. Unlike conventional hires who choose to join a new firm on their own volition, most acquired employees do not have a voice in the decision to be acquired, much less by whom to be acquired. The lack of worker agency may result in a preference mismatch between the acquired employees and the acquiring firm, leading to elevated rates of turnover. Using comprehensive employee-employer matched data from the US Census, I document that acquired workers are significantly more likely to leave compared to regular hires. By constructing a novel peer-based proxy for worker preferences, I show that acquired employees who prefer to work for startups ' rather than established firms ' are the most likely to leave after the acquisition, lending support to the preference mismatch theory. Moreover, these departures suggest a deeper strategic cost of competitive spawning: upon leaving, acquired workers are more likely to found their own companies, many of which appear to be competitive threats that impair the acquirer's long-run performance.View Full Paper PDF
-
Working PaperLEHD Infrastructure S2014 files in the FSRDC
September 2018
Working Paper Number:
CES-18-27R
The Longitudinal Employer-Household Dynamics (LEHD) Program at the U.S. Census Bureau, with the support of several national research agencies, maintains a set of infrastructure files using administrative data provided by state agencies, enhanced with information from other administrative data sources, demographic and economic (business) surveys and censuses. The LEHD Infrastructure Files provide a detailed and comprehensive picture of workers, employers, and their interaction in the U.S. economy. This document describes the structure and content of the 2014 Snapshot of the LEHD Infrastructure files as they are made available in the Census Bureau's secure and restricted-access Research Data Center network. The document attempts to provide a comprehensive description of all researcher-accessible files, of their creation, and of any modifications made to the files to facilitate researcher access.View Full Paper PDF
-
Working PaperOccupational Classifications: A Machine Learning Approach
August 2018
Working Paper Number:
CES-18-37
Characterizing the work that people do on their jobs is a longstanding and core issue in labor economics. Traditionally, classification has been done manually. If it were possible to combine new computational tools and administrative wage records to generate an automated crosswalk between job titles and occupations, millions of dollars could be saved in labor costs, data processing could be sped up, data could become more consistent, and it might be possible to generate, without a lag, current information about the changing occupational composition of the labor market. This paper examines the potential to assign occupations to job titles contained in administrative data using automated, machine-learning approaches. We use a new extraordinarily rich and detailed set of data on transactional HR records of large firms (universities) in a relatively narrowly defined industry (public institutions of higher education) to identify the potential for machine-learning approaches to classify occupations.View Full Paper PDF
-
Working PaperAn Economic Analysis of Privacy Protection and Statistical Accuracy as Social Choices
August 2018
Working Paper Number:
CES-18-35
Statistical agencies face a dual mandate to publish accurate statistics while protecting respondent privacy. Increasing privacy protection requires decreased accuracy. Recognizing this as a resource allocation problem, we propose an economic solution: operate where the marginal cost of increasing privacy equals the marginal benefit. Our model of production, from computer science, assumes data are published using an efficient differentially private algorithm. Optimal choice weighs the demand for accurate statistics against the demand for privacy. Examples from U.S. statistical programs show how our framework can guide decision-making. Further progress requires a better understanding of willingness-to-pay for privacy and statistical accuracy.View Full Paper PDF
-
Working PaperOlder and Slower: The Startup Deficit's Lasting Effects on Aggregate Productivity Growth
June 2018
Working Paper Number:
CES-18-29
We investigate the link between declining firm entry, aging incumbent firms and sluggish U.S. productivity growth. We provide a dynamic decomposition framework to characterize the contributions to industry productivity growth across the firm age distribution and apply this framework to the newly developed Revenue-enhanced Longitudinal Business Database (ReLBD). Overall, several key findings emerge: (i) the relationship between firm age and productivity growth is downward sloping and convex; (ii) the magnitudes are substantial and significant but fade quickly, with nearly 2/3 of the effect disappearing after five years and nearly the entire effect disappearing after ten; (iii) the higher productivity growth of young firms is driven nearly exclusively by the forces of selection and reallocation. Our results suggest a cumulative drag on aggregate productivity of 3.1% since 1980. Using an instrumental variables strategy we find a consistent pattern across states/MSAs in the U.S. The patterns are broadly consistent with a standard model of firm dynamics with monopolistic competition.View Full Paper PDF